
BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors
Rev. 0 — 20 February 2024 User guide

Document information
Information Content

Keywords BLDCRT1170B , BLDC, Six step control, MCAT, Motor control, Sensorless control, Speed control

Abstract This user guide describes the implementation of the motor-control software for 3-phase Brushless
DC Motors.

https://www.nxp.com

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

1 Introduction

SDK motor control example user guide describes the sensorless implementation of the motor-control software
for 3-phase Brushless DC (BLDC) motor using following NXP platforms:

• i.MX RT1170-EVKB (MIMXRT1170-EVK)
• Freedom Development Platform for Low-Voltage, 3-Phase BLDC Motor Control (FRDM-MC-LVBLDC)

The document is divided into several parts. Hardware setup, processor features, and peripheral settings are
described at the beginning of the document. The next part contains the BLDC project description and motor
control peripheral initialization. The last part describes user interface and additional example features.

Available motor control examples types with supported motors, and possible control methods are listed in
Table 1.

Possible control methods in SDK example
Example type Supported motor

Sensorless Speed FOC Sensored Speed FOC

bldc Linix 45ZWN24-
40 (default motor) ✓ N/A

Table 1. Available example type, supported motors and control methods

SDK motor control example description:

• bldc - bldc example uses fraction arithmetic, the example contains sensorless speed control. Default motor
configuration is tuned for the Linix 45ZWN24-40 motor.

The SDK motor control example contains several additional features:

• FreeMASTER bldc.pmpx project provides a simple and user-friendly way for algorithm tuning, software
control, debugging, and diagnostics.

• MCAT - Motor Control Application Tuning page based on the FreeMASTER runtime debugging tool.

The control software and the BLDC control theory, in general, are described in 3-Phase BLDC Sensorless Motor
Control Application (document DRM144).

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
2 / 41

https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVK
https://www.nxp.com/design/design-center/development-boards/general-purpose-mcus/nxp-freedom-development-platform-for-low-voltage-3-phase-bldc-motor-control:FRDM-MC-LVBLDC
https://www.nxp.com/webapp/Download?colCode=DRM148

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

2 Hardware setup

The following chapter describes the used hardware and the setup needed for proper example working

2.1 Linix 45ZWN24-40 motor
The Linix 45ZWN24-40 motor is a low-voltage 3-phase permanent-magnet motor with hall sensor used in BLDC
applications. The motor parameters are listed in Table 2.

Characteristic Symbol Value Units

Rated voltage Vt 24 V

Rated speed - 4000 RPM

Rated torque T 0.0924 Nm

Rated power P 40 W

Continuous current Ics 2.34 A

Number of pole-pairs pp 2 -

Table 2. Linix 45ZWN24-40 motor parameters

Figure 1. Linix 45ZWN24-40 permanent magnet synchronous motor

The motor has two types of connectors (cables). The first cable has three wires and is designated to power the
motor. The second cable has five wires and is designated for the hall sensors’ signal sensing. For the BLDC
sensorless application, only the power input wires are needed.

2.2 FRDM-MC-LVBLDC
The FRDM-MC-LVBLDC low-voltage evaluation board (in a shield form factor) effectively turns the Freedom
development platform or an evaluation board into a complete motor-control reference design. It is compatible
with existing NXP Freedom development boards and evaluation boards. The Freedom motor-control headers
are compatible with the Arduino R3 pin layout.

The FRDM-MC-LVBLDC board has a power supply input voltage of 12 VDC and does not require any hardware
configuration or jumper settings. It contains no jumpers.

Figure 2. Motor-control development platform block diagram

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
3 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

Figure 3. FRDM-MC-LVBLDC

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
4 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

The FRDM-MC-LVBLDC board does not require a complicated setup. For more information about the Freedom
development platform, see www.nxp.com.

2.3 i.MX RT1170-EVKB
The i.MX RT1170-EVKB provides a high-performance solution in a highly integrated board. It consists of a 6-
layer PCB with through hole design for better EMC performance at a low cost, and it includes key components
and interfaces. The dual-core i.MX RT1170 runs on the Cortex-M7 at 1 GHz and Arm Cortex-M4 at 400 MHz,
while providing best-in-class security.

Jumper Setting Jumper Setting Jumper Setting

JP6 1-2 J53 1-2 J90 1-2

JP7 1-2 J56 2-3 J91 1-2

J14 1-2 J67 1-2 J93 1-2

J19 1-2 J68 1-2 J97 1-2

J23 1-2 J69 1-2 J98 1-2

J28 1-2 J71 1-2 J99 1-2

J38 7-8 J73 1-2 J100 1-2

J41 1-2 J79 1-2

J49 1-2 J80 1-2

Table 3. MIMXRT1170-EVKB jumper settings

All others jumpers are open.

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
5 / 41

http://www.freescale.com

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

Figure 4. MIMXRT1170-EVKB board with highlighted jumper settings

The motor-control application requires removing and soldering some zero resistors for a correct connection.
Remove and solder zero resistors according to Table 4.

Add resistors Remove resistors

R1841 R1845 R188 R412

R1842 R1846 R193 R1814

R1843 R1847

R1844

Table 4. Add and remove resistors

For locate resistors on the board see schematic and layout on board web page.

2.3.1 Hardware assembling

1. Connect the FRDM-MC-LVBLDC shield on top of the MIMXRT1170-EVK board.
BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
6 / 41

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus:IMX-RT-SERIES

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

2. Connect the 3-phase motor wires to the screw terminals (J7) on the Freedom BLDC power stage.
3. Plug the USB cable from the USB host to the Debug USB connector J86 on the EVK board.
4. Plug the 12-V DC power supply to the DC power connector on the Freedom BLDC power stage.

Note: For a correct current measurement it is necessary to connect pin J2-9 to pin J1-16 on BLDC low-voltage
platform. (On i.MX RT1170-EVKB it is pin J10-9 (GPIO_AD_30) to pin J9-16(GPIO_AD_14))

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
7 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

3 Processors features and peripheral settings

This chapter describes the peripheral settings and application timing.

3.1 i.MX RT1170
The i.MX RT1170 crossover MCUs are setting speed records at 1 GHz. This ground-breaking family combines
superior computing power and multiple media capabilities with ease of use and real-time functionality. The
i.MX RT1170 MCU offers support over a wide temperature range and is qualified for consumer, industrial, and
automotive markets.

For more information, see i.MX RT1170 Crossover MCU Family web pages.

3.1.1 RT1170 - Hardware timing and synchronization

Correct and precise timing is crucial for motor-control applications. Therefore, the motor-control-dedicated
peripherals take care of the timing and synchronization on the hardware layer. In addition, you can set the PWM
frequencies as a multiple of the ADC interrupt (ADC ISR) frequency.

master
reload

master
reload

SM0 counter

PWM top

PWM bottom

ADC ETC
and ADC
conversion

ADC ETC
ISR

TRIG0 (val 4) Tdeadtime

Figure 5. Hardware timing and synchronization on i.MX RT1170

• The top signal shows the eFlexPWM counter (SM0 counter). The dead time is emphasized at the PWM top
and PWM bottom signals. The SM0 submodule generates the master reload at every opportunity.

• The SM0 generates trigger 0 (when the counter counts to a value equal to the VAL4) for the ADC_ETC (ADC
External Trigger Control) with a delay of Tdeatime/2. This delay ensures correct current sampling at the duty
cycles close to 100 %.

• ADC_ETC starts the ADC conversion.
• When the ADC conversion is completed, the ADC_ETC ISR (ADC_ETC interrupt) is entered. The FOC

calculation is done in this interrupt.

3.1.2 RT1170 - Peripheral settings

This section describes the peripherals used for the motor control. On i.MX RT1170, three submodules from the
enhanced FlexPWM (eFlexPWM) are used for 6-channel PWM generation and two 12-bit ADCs for the phase

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
8 / 41

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1170-crossover-mcu-family-first-ghz-mcu-with-arm-cortex-m7-and-cortex-m4-cores:i.MX-RT1170

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

currents and DC-bus voltage measurement. The eFlexPWM and ADC are synchronized via submodule 0 from
the eFlexPWM. The following settings are located in the mc_periph_init.c and peripherals.c files and
their header files.

3.1.2.1 PWM generation - PWM1

• Six channels from three submodules are used for the 3-phase PWM generation. Submodule 0
generates the master reload at event every nth opportunity, depending on the user-defined macro
M1_FOC_FREQ_VS_PWM_FREQ.

• Submodules 1 and 2 get their clocks from submodule 0.
• The counters at submodules 1 and 2 are synchronized with the master reload signal from submodule 0.
• Submodule 0 is used for synchronization with ADC_ETC. The submodule generates the output trigger after the

PWM reload, when the counter counts to VAL4.
• Fault mode is enabled for channels A and B at submodules 0, 1, and 2 with automatic fault clearing.

Note: The PWM outputs are re-enabled at the first PWM reload after the fault input returns to zero.
• The PWM period (frequency) is determined by how long the counter takes to count from INIT to VAL1. By

default, INIT = -MODULO/2 and VAL1 = MODULO/2 -1.
• Dead time insertion is enabled. Define the dead time length in the M1_PWM_DEADTIME macro.

3.1.2.2 ADC external trigger control - ADC_ETC

The ADC_ETC module enables multiple users to share the ADC modules in the Time Division Multiplexing
(TDM) way. The external triggers can be brought from the Cross BAR (XBAR) or other sources. The ADC scan
is started via ADC_ETC.

• Both ADCs have set their own trigger chains.
• The trigger chain length is set to 2. The back-to-back ADC trigger mode is enabled.
• The SyncMode is on. In the SyncMode, ADC1 and ADC2 are controlled by the same trigger source. The

trigger source is the PWM submodule 0.
• After both ADCs conversion is completed, ADC_ETC interrupt is enabled and serves the fast-loop algorithm.

3.1.2.3 Analog sensing - ADC1 and ADC2

ADC1 and ADC2 are used for the MC analog sensing of currents and DC-bus voltage.

• The ADCs operate as 12-bit with the single-ended conversion and hardware trigger selected. The ADCs are
triggered from ADC_ETC by the trigger generated by the eFlexPWM.

3.1.2.4 Time event, forced commutation control - PWM1

The PWM1 submodule 3 is used for forced commutation control.

• PWM1 submodule 3 is set as free running counter and get their clocks from submodule 0. Submodule 0's
clock prescaler is setup to 128.

• The PWM1 counts from 0 to 0xFFFF.
• The output compare interrupt is enabled and generated when counter equals to value register.
• Value register is periodically updated in fast control loop function and PWM1 output compare interrupt is not

invoked until error in BLDC commutation process appears.
• If error in BLDC commutation process appears, the forced commutation is performed in PWM1 output

compare interrupt service routine.

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
9 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

3.1.2.5 Peripheral interconnection for - XBARA1

The crossbar is used to interconnect the trigger from the PWM to the ADC_ETC.

• The FLEXPWM2_PWM1_OUT_TRIG0_1 output trigger (generated by submodule 0) is connected to
ADC_ETC_XBAR0_TRIG0.

• The encoder signal Phase A and Phase B are configured in pinmux.c.

3.1.2.6 Slow-loop interrupt generation - TMR1

The QuadTimer module TMR1 is used to generate the slow-loop interrupt.

• The slow loop is usually ten times slower than the fast loop. Therefore, the interrupt is generated after the
counter counts from CNTR0 = 0 to COMP1 = IPG CLK ROOT / (16U * Speed Loop Freq). The speed loop
frequency is set in the M1_SPEED_LOOP_FREQ macro and equals 1000 Hz.

• An interrupt (which serves the slow-loop period) is enabled and generated at the reload event.

3.1.2.7 FreeMASTER communication - LPUART1

Low-Power Universal Asynchronous Receiver and Transmitter (LPUART1) is used for the FreeMASTER
communication between the MCU board and the PC.

• The baud rate is set to 115200 bit/s.
• The receiver and transmitter are both enabled.
• The other settings are set to default.

3.2 CPU load and memory usage
The following information applies to the application built using one of the following IDE: MCUXpresso IDE, IAR,
Keil MDK or CodeWarrior. The memory usage is calculated from the *.map linker file, including FreeMASTER
recorder buffer allocated in RAM. In the MCUXpresso IDE, the memory usage can be also seen after project
build in the Console window. The table below shows the maximum CPU load of the supported examples.
The CPU load is measured using the SYSTICK timer. The CPU load is dependent on the fast-loop (BEMF
measurement) and slow-loop (speed loop) frequencies. The total CPU load is calculated using the following
equations:

(1)

(2)

(3)

Where:

CPUfast = the CPU load taken by the fast loop

cyclesfast = the number of cycles consumed by the fast loop

ffast = the frequency of the fast-loop calculation

fCPU = CPU frequency

CPUslow = the CPU load taken by the slow loop

cyclesslow = the number of cycles consumed by the slow loop

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
10 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

fslow = the frequency of the slow-loop calculation

CPUtotal = the total CPU load consumed by the motor control

debug configuration

Device Example Speed Control

i.MX RT1170-EVKB bldc 34,3%

Table 5. Maximum CPU load (fast loop)

CPU load measured without defined RAM_RELOCATION macro. Measured CPU load and memory usage
applies to the application built using IAR IDE.

Note: The maximum CPU load is depending on executing functions from RAM or flash memory. Executing
functions can be speeding up in RTCESL_cfg.h header file by using macro RAM_RELOCATION.

Note: Memory usage and maximum CPU load can differ depending on the used IDEs and settings.

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
11 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

4 Project file and IDE workspace structure

All the necessary files are included in one package, which simplifies the distribution and decreases the size of
the final package. The directory structure of this package is simple, easy to use, and organized logically. The
folder structure used in the IDE differs from the structure of the BLDC package installation, but it uses the same
files. The different organization is chosen due to better manipulation of folders and files in workplaces and the
possibility of adding or removing files and directories. The pack_motor_<board_name> project includes all
the available functions and routines. This project serves for development and testing purposes.

4.1 BLDC project structure
The directory tree of the BLDC project is shown in below.

Figure 6. Directory tree

The main project folder pack_motor_<board_name>\boards\<board_name>\demo_apps\mc_bldc
\<core> contains the following folders and files:

• iar: for the IAR Embedded Workbench IDE.

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
12 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

• armgcc: for the GNU Arm IDE.
• mdk: for the uVision Keil IDE.
• m1_bldc_appconfig.h: contains the definitions of constants for the application control processes,

parameters of the motor and regulators, and the constants for other vector-control-related algorithms. When
you tailor the application for a different motor using the Motor Control Application Tuning (MCAT) tool, the tool
generates this file at the end of the tuning process.

• main.c: contains the basic application initialization (enabling interrupts), subroutines for accessing the MCU
peripherals, and interrupt service routines. The FreeMASTER communication is performed in the background
infinite loop.

• board.c: contains the functions for the UART, GPIO, and SysTick initialization.
• board.h: contains the definitions of the board LEDs, buttons, UART instance used for FreeMASTER, and so

on.
• clock_config.c and .h: contains the CPU clock setup functions.
• mc_periph_init.c: contains the motor-control driver peripherals initialization functions that are specific for

the board and MCU used.
• mc_periph_init.h: header file for mc_periph_init.c. This file contains the macros for changing the

PWM period and the ADC channels assigned to the phase currents and board voltage.
• freemaster_cfg.h: the FreeMASTER configuration file containing the FreeMASTER communication and

features setup.
• pin_mux.c and .h: port configuration files. Generate these files in the pin tool.
• peripherals.c and .h: MCUXpresso Config Tool configuration files.

The main motor-control folder pack_motor_<board_name>\middleware\motor_control\ contains these
subfolders:

• bldc: contains main BLDC motor-control functions.
• freemaster: contains the FreeMASTER project file bldc.pmpx. Open this file in the FreeMASTER tool and

use it to control the application. The folder also contains the auxiliary files for the MCAT tool.

The pack_motor_<board_name>\middleware\motor_control\bldc\ folder contains these subfolders
common to the other motor-control projects:

• mc_algorithms: contains the main control algorithms used to control commutation control and speed
control loop.

• mc_cfg_template: contains templates for MCUXpresso Config Tool components.
• mc_drivers: contains the source and header files used to initialize and run motor-control applications.
• mc_state_machine: contains the software routines that are executed when the application is in a particular

state or state transition.
• state_machine: contains the state machine functions for the FAULT, INITIALIZATION, STOP, and RUN

states.

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
13 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

5 Motor-control peripheral initialization

The motor-control peripherals are initialized by calling the MCDRV_Init_M1() function during MCU startup
and before the peripherals are used. All initialization functions are in the mc_periph_init.c source file and
the mc_periph_init.h header file. The definitions specified by the user are also in these files. The features
provided by the functions are the 3-phase PWM generation and BEMF voltage measurement, as well as the
DC-bus voltage, current and auxiliary quantity measurement.

The mc_periph_init.h header file provides the following macros defined by the user:

• M1_MCDRV_ADC_PERIPH_INIT: this macro calls ADC peripheral initialization.
• M1_MCDRV_PWM_PERIPH_INIT: this macro calls PWM peripheral initialization.
• M1_MCDRV_CMP_INIT: this macro calls comparator peripheral initialization.
• M1_MCDRV_TMR_CMT_PERIPH_INIT: this macro calls PWM peripheral initialization of commutation timer

event0.
• M1_PWM_FREQ: the value of this definition sets the PWM frequency.
• M1_FOC_FREQ_VS_PWM_FREQ: enables you to call the fast-loop interrupt at every first, second, third, or

nth PWM reload. This is convenient when the PWM frequency must be higher than the maximal fast-loop
interrupt.

• M1_SPEED_LOOP_FREQ: the value of this definition sets the speed loop frequency (TMR1 interrupt).
• M1_PWM_DEADTIME: the value of the PWM dead time in nanoseconds.
• M1_FAULT_NUM: the value of the Over Current Fault detection.
• M1_ADC[1,2]_PH_[A..C]_CHNL: These macros serve to assign the ADC channels for back-EMF voltage

measurement. The general rule is that the only one ADC module can be assigned to sense required back-
EMF voltage. When this rule is broken, preprocessor error is issued. For more information about the back-
EMF voltage measurement, see Three-phase BLDC sensorless motor control application (document
DRM144)

• M1_ADC[1,2]_PH_[A..C]_SIDE: this define is used to select the ADC channel side for the BEMF voltage
measurement.

• M1_ADC[1,2]_UDCB_CHNL: this define is used to select the ADC channel for the measurement of the DC-
bus voltage.

• M1_ADC[1,2]_UDCB_SIDE: this define is used to select the ADC channel side for the measurement of the
DC-bus voltage.

• M1_ADC[1,2]_IDCB_CHNL: this define is used to select the ADC channel for the measurement of the DC-
bus current.

• M1_ADC[1,2]_IDCB_SIDE: this define is used to select the ADC channel side for the measurement of the
DC-bus current.

In the motor-control software, the following API-serving ADC and PWM peripherals are available:

• The available APIs for the ADC are:
– mcdrv_adcetc_t: MCDRV ADC structure data type.
– void M1_MCDRV_ADC_PERIPH_INIT(): this function is by default called during the ADC peripheral

initialization procedure invoked by the MCDRV_Init_M1() function and should not be called again after the
peripheral initialization is done.

– void M1_MCDRV_ADC_ASSIGN_BEMF(mcdrv_adcetc_t*): calling this function assigns proper ADC
channels for the next BEMF voltage measurement based on the commutation sector.

– void M1_MCDRV_CURR_CALIB_INIT(mcdrv_adcetc_t*): this function initializes the phase-current
channel-offset measurement.

– void M1_MCDRV_CURR_CALIB(mcdrv_adcetc_t*): this function reads the current information from the
unpowered phases of a stand-still motor and filters them using moving average filters. The goal is to obtain

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
14 / 41

https://www.nxp.com/doc/DRM144

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

the value of the measurement offset. The length of the window for moving the average filters is set to eight
samples by default.

– void M1_MCDRV_CURR_CALIB_SET(mcdrv_adcetc_t*): this function asserts the current
measurement offset values to the internal registers. Call this function after a sufficient number of
M1_MCDRV_CURR_3PH_CALIB() calls.

– void M1_MCDRV_ADC_GET(mcdrv_adcetc_t*): this function reads and calculates the actual values of
the BEMF volatage, DC-bus voltage, DC-bus current, and auxiliary quantity.

• The available APIs for the PWM are:
– mcdrv_pwm3ph_pwma_t: MCDRV PWM structure data type.
– void M1_MCDRV_PWM_PERIPH_INIT: this function is by default called during the PWM periphery

initialization procedure invoked by the MCDRV_Init_M1() function.
– void M1_MCDRV_PWM3PH_SET_DUTY(mcdrv_pwma_pwm3ph_t*): this function updates the PWM phase

duty cycles.
– void M1_MCDRV_PWM3PH_SET_PWM_OUTPUT(mcdrv_pwma_pwm3ph_t*): this function disables one

PWM channel for BEMF measurement, set one and invert its signal generation for the other phase.
– bool_t M1_MCDRV_PWM3PH_FLT_GET(mcdrv_pwma_pwm3ph_t*): this function returns the state of

the overcurrent fault flags and automatically clears the flags (if set). This function returns true when an
overcurrent event occurs. Otherwise, it returns false.

• The available APIs for the asynchronous time event functions are:
– mcdrv_cmt_pwma_t: MCDRV CMT_PWMA structure data type.
– void M1_MCDRV_TMR_CMT_PERIPH_INIT(): this function is by default called during the CMT_PWMA

Timer initialization procedure invoked by the MCDRV_Init_M1() function.
– void M1_MCDRV_TMR_CMT_GET(mcdrv_cmt_pwma_t*): this function read and returns the actual values

of PWMA counter and value register.
– void M1_MCDRV_TMR_CMT_SET(mcdrv_cmt_pwma_t*, uint16_t ui16TimeNew): this function

update PWMA value register.
• The available APIs for the comparator are:

– void M1_MCDRV_CMP_INIT(): this macro calls Comparator peripheral initialization.

Note: Not all macros are available for every motor control example type.

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
15 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

6 User interface

The application contains the demo mode to demonstrate motor rotation. You can operate it either using the
user button, or using FreeMASTER. The NXP development boards include a user button associated with a
port interrupt (generated whenever one of the buttons is pressed). At the beginning of the ISR, a simple logic
executes and the interrupt flag clears. When you press the button, the demo mode starts. When you press the
same button again, the application stops and transitions back to the STOP state.

The other way to interact with the demo mode is to use the FreeMASTER tool. The FreeMASTER application
consists of two parts: the PC application used for variable visualization and the set of software drivers running
in the embedded application. The serial interface transfers data between the PC and the embedded application.
This interface is provided by the debugger included in the boards.

The application can be controlled using the following two interfaces:

• The user button on the development board (controlling the demo mode):
– MIMXRT1170-EVKB - SW7

• Remote control using FreeMASTER (Following chapter):
– Setting a variable in the FreeMASTER Variable Watch. See chapter Section 7.4

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
16 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

7 Remote control using FreeMASTER

This section provides information about the tools and recommended procedures to control the sensorless
Brushless DC (BLDC) application using FreeMASTER. The application contains the embedded-side driver
of the FreeMASTER real-time debug monitor and data visualization tool for communication with the PC. It
supports non-intrusive monitoring, as well as the modification of target variables in real time, which is very
useful for the algorithm tuning. Besides the target-side driver, the FreeMASTER tool requires the installation of
the PC application as well. You can download the latest version of FreeMASTER at www.nxp.com/freemaster.
To run the FreeMASTER application including the MCAT tool, double-click the bldc.pmpx file located in
the middleware\motor_control\freemaster folder. The FreeMASTER application starts and the
environment is created automatically, as defined in the *.pmpx file.

Note: In MCUXpresso, the FreeMASTER application can run directly from IDE in motor_control/
freemaster folder.

7.1 Establishing FreeMASTER communication
The remote operation is provided by FreeMASTER via the USB interface. To control a BLDC motor using
FreeMASTER, perform the steps below:

1. Download the project from your chosen IDE to the MCU and run it.
2. Open the FreeMASTER project bldc.pmpx . The BLDC project uses the TSA by default, so it is not

necessary to select a symbol file for FreeMASTER.
3. To establish the communication, click the communication button (the green "GO" button in the top left-hand

corner).

Figure 7.  Green “GO” button placed in top left-hand corner
4. If the communication is established successfully, the FreeMASTER communication status in the

bottom right-hand corner changes from "Not connected" to "RS-232 UART Communication; COMxx;
speed=115200". Otherwise, the FreeMASTER warning pop-up window appears.

Figure 8. FreeMASTER—communication is established successfully
5. To reload the MCAT HTML page and check the App ID, press F5.
6. Control the BLDC motor by writing to a control variable in a variable watch.
7. If you rebuild and download the new code to the target, turn the FreeMASTER application off and on.

If the communication is not established successfully, perform the following steps:

1. Go to the Project > Options > Comm tab and make sure that the correct COM port is selected and the
communication speed is set to 115200 bps.

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
17 / 41

http://www.nxp.com/freemaster

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

Figure 9. FreeMASTER communication setup window
2. Ensure, that your computer is communicating with the plugged board. Unplug and then plug in the USB

cable and reopen the FreeMASTER project.

7.2 TSA replacement with ELF file
The FreeMASTER project for motor control example uses Target-Side Addressing (TSA) information about
variable objects and types to be retrieved from the target application by default. With the TSA feature, you
can describe the data types and variables directly in the application source code and make this information
available to the FreeMASTER tool. The tool can then use this information instead of reading symbol data from
the application’s ELF/Dwarf executable file.

FreeMASTER reads the TSA tables and uses the information automatically when an MCU board is connected.
A great benefit of using the TSA is no issues with the correct path to ELF/Dwarf file. The variables described
by TSA tables may be read-only, so even if FreeMASTER attempts to write the variable, the target MCU side
denies the value. The variables not described by any TSA tables may also become invisible and protected even
for read-only access.

The use of TSA means more memory requirements for the target. If you do not want to use the TSA feature,
you must modify the example code and FreeMASTER project.

To modify the example code, follow the steps below:

1. Open motor control project and rewrite macro FMSTR_USE_TSA from 1 to 0 in freemaster_cfg.h file.
2. Build, download, and run motor control project.
3. Open FreeMASTER project and click to Project > Options (or use shortcut Ctrl+T).
4. Click to MAP Files tab and find Default symbol file (ELF/Dwarf executable file) located in IDE output folder.

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
18 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

Figure 10. Default symbol file
5. Click OK and restart the FreeMASTER communication.

For more information, check FreeMASTER User Guide.

7.3 Motor Control Aplication Tuning interface (MCAT)
The BLDC sensorless application can be easily controlled and tuned using the Motor Control Application Tuning
(MCAT) plug-in for BLDC. The MCAT for BLDC is a user-friendly page, which runs within the FreeMASTER. The
tool consists of the tab menu and workspace as shown in Figure 11. Each tab from the tab menu (4) represents
one submodule which enables tuning or controlling different application aspects. Besides the MCAT page for
BLDC, several scopes, recorders, and variables in the project tree (5) are predefined in the FreeMASTER
project file to further the motor parameter tuning and debugging simplify.

When the FreeMASTER is not connected to the target, the "Board found" line (2) shows "Board ID not found".
When the communication with the target MCU is established, the "Board found" line is read from Board ID
variable watch and displayed. If the connection is established and the board ID is not shown, press F5 to reload
the MCAT HTML page.

There are three action buttons in MCAT (3):

• Load data - MCAT input fields (for example, motor parameters) are loaded from mX_bldc_appconfig.h
file (JSON formatted comments). Only existing mX_bldc_appconfig.h files can be selected for loading.
Loaded mX_bldc_appcofig.h file is displayed in grey field (7).

• Save data - MCAT input fields (JSON formatted comments) and output macros are saved to
mX_bldc_appconfig.h file. Up to 9 files (m1-9_bldc_appconfig.h) can be selected. A pop-up window
with the user motor ID and description appears when a different mX_bldc_appcofig.h file is selected. The
motor ID and description are also saved in mX_bldc_appcofig.h as a JSON comment. The embedded
code includes m1_bldc_appcofig.h only at single motor control application. Therefore, saving to higher
indexed mX_bldc_appconfig.h files has no effect at the compilation stage.

• Update target - writes the MCAT calculated tuning parameters to FreeMASTER Variables, which effectively
updates the values on target MCU. These tuning parameters are updated in MCU's RAM. To write these

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
19 / 41

https://www.nxp.com/docs/en/user-guide/FMSTERUG.pdf
https://www.nxp.com/design/training/motor-control-application-tuning-mcat-tool-pmsm-servo-tuning:TIP-MCAT-PMSM
https://www.nxp.com/design/training/motor-control-application-tuning-mcat-tool-pmsm-servo-tuning:TIP-MCAT-PMSM

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

tuning parameters to MCU's flash memory, m1_bldc_appcofig.h must be saved, code recompiled, and
downloaded to MCU.

Note: Path to mX_bldc_appcofig.h file also composed from Board ID value. Therefore, FreeMASTER must
be connected to the target, and Board ID value read prior using Save/Load buttons.

Note: Only Update target button updates values on the target in real time. Load/Save buttons operate with
mX_bldc_appcofig.h file only.

Note: MCAT may require Internet connection. If no Internet connection is available, CSS and icons may not be
properly loaded.

Figure 11. FreeMASTER + MCAT layout

In the default configuration, the following tabs (4) are available:

• Application concept: welcome page with the BLDC sensorless application diagram and a short description of
the application.

• Parameters: this page enables you to modify the motor parameters, the specification of hardware and
application scales, and fault limits.

• Control loop: this tab enables you to modify speed and current (torque)-loop PI controller gains and output
limits and to modify speed ramp parameters.

• Sensorless: this page enables you to tune the important parameters for sensorless BLDC application like
integration threshold, minimal speed and open loop startup parameters.

• Output file: this tab shows all the calculated constants that are required by the BLDC sensorless application.
It is also possible to generate the m1_bldc_appconfig.h file, which is then used to preset all application
parameters permanently at the project rebuild.

• Online update : this tab shows actual values of variables on target and new calculated values, which can be
used to update the target variables.

Every sublock in FreeMASTER project tree (5) has defined several variables in variable watch (6).
BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
20 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

The following sections provide simple instructions on how to identify the parameters of a connected BLDC
motor and how to tune the application appropriately.

7.3.1 MCAT tabs description

This chapter describes MCAT input parameters and equations used to calculate MCAT output (generated)
parameters. In the default configuration, the below described tabs are available. Some tabs may be missing
if not supported in the embedded code. There are general constants used at MCAT calculations listed in the
following table:

Constant Value Unit

IIRxCoefsScaleType 8 -

CtrlLOOP_Ts 0.001 -

IDC_limit 3 -

pi 3.1416 -

Table 6. Constants used in equations

7.3.1.1 Application concept

This tab is a welcome page with the BLDC sensorless diagram and a short description of the application.

7.3.1.2 Parameters

This tab enables modification of motor parameters, specification of hardware and application scales, alignment,
and fault limits. All inputs are described in the following table. MCAT group and MCAT name help to locate the
parameter in MCAT layout. Equation name represents the input parameter in equations below.

MCAT group MCAT name Equation name Description Unit

PP parametersPP Motor number of pole-pairs.
Obtain from motor manufacturer.

-Motor
parameters

N nom parametersNnom Nominal motor speed. Obtain
from motor manufacturer.

[rpm]

I max parametersImax Current sensing HW scale. Keep
as-is in case of standard NXP
HW or recalculate according to
own schematic.

[A]Hardware scales

U DCB max parametersUdcbMax DCBus voltage sensing HW
scale. Keep as-is in case of
standard NXP HW or recalculate
according to own schematic.

[V]

U DCB under parametersUdcbUnder DCBus under voltage fault
threshold

[V]

U DCB over parametersUdcbOver DCBus over voltage fault
threshold

[V]

N over parametersNover Over speed fault threshold [rpm]

Fault limits

N min parametersNmin Minimal closed loop speed.
When the required speed ramps
down under this threshold, the
motor control state machine

[rpm]

Table 7. Parameters tab inputs

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
21 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

MCAT group MCAT name Equation name Description Unit
goes to freewheel state where
top and bottom transistors are
turned off and motor speeds
down freely. Applies only for
sensorless operation.

U DCB IIR F0 parametersUdcbIrrF0 Cut-off frequency of DCBus IIR
filter

[Hz]

I DCB IIR F0 parametersIdcbIrrF0 Cut-off frequency of DCBus IIR
filter

[Hz]

Calibration duration parametersCalibDuration ADC (phase current offset)
calibration duration. Done every
time transitioning from STOP to
RUN.

[sec]

Fault duration parametersFaultDuration After fault condition disappears,
wait defined time to clear
pending faults bitfield and
transition to STOP state.

[sec]

N max parametersNmax Application speed scale. Keep
about 10 % margin above N
over.

[rpm]

Application
scales

Ke parametersKe Motor electrical constant. Obtain
from motor manufacturer or use
the Ke identification and then fill
manually.

[V.sec/rad]

Align voltage parametersAlignVoltage Motor alignment voltage. [V]

Align current parametersAlignCurrent Motor alignment current. [A]

Alignment

Align duration parametersAlignDuration Motor alignment duration. [sec]

Table 7. Parameters tab inputs...continued

Output equations (applies for saving to mX_bldc_appcofig.h and also for updating a corresponding
FreeMASTER variable):

• M1_ALIGN_CURRENT = parametersAlignCurrent / parametersImax
• M1_ALIGN_DURATION = parametersAlignDuration / 0.001
• M1_CALIB_DURATION = parametersCalibDuration / constants.CtrlLOOP_Ts
• M1_FAULT_DURATION = parametersFaultDuration / constants.CtrlLOOP_Ts
• M1_I_DCB_LIMIT = constants.IDC_limit / parametersImax
• M1_U_DCB_UNDERVOLTAGE = parametersUdcbUnder / parametersUdcbMax
• M1_U_DCB_OVERVOLTAGE = parametersUdcbOver / parametersUdcbMax
• M1_N_NOM = parametersNnom / parametersNmax
• M1_N_MIN = parametersNmin / parametersNmax
• M1_UDCB_IIR_B0 = 4 * ((2 * Math.PI * UDCB_IIR_cutoff_freq / controlLoopPwmFreq) / (2 + (2 * Math.PI *

UDCB_IIR_cutoff_freq / controlLoopPwmFreq))) / constants.IIRxCoefsScaleType
• M1_UDCB_IIR_B1 = 4 * ((2 * Math.PI * UDCB_IIR_cutoff_freq / controlLoopPwmFreq) / (2 + (2 * Math.PI *

UDCB_IIR_cutoff_freq / controlLoopPwmFreq))) / constants.IIRxCoefsScaleType
• M1_UDCB_IIR_A1 = (-4) * ((2 * Math.PI * UDCB_IIR_cutoff_freq / controlLoopPwmFreq - 2) / (2 + (2 *

Math.PI * UDCB_IIR_cutoff_freq / controlLoopPwmFreq))) / constants.IIRxCoefsScaleType
• M1_IDCB_IIR_B0 = 4 * ((2 * Math.PI * IDCB_IIR_cutoff_freq / controlLoopPwmFreq) / (2 + (2 * Math.PI *

IDCB_IIR_cutoff_freq / controlLoopPwmFreq))) / constants.IIRxCoefsScaleType

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
22 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

• M1_IDCB_IIR_B1 = 4 * ((2 * Math.PI * IDCB_IIR_cutoff_freq / controlLoopPwmFreq) / (2 + (2 * Math.PI *
IDCB_IIR_cutoff_freq / controlLoopPwmFreq))) / constants.IIRxCoefsScaleType

• M1_IDCB_IIR_A1 = (-4) * ((2 * Math.PI * IDCB_IIR_cutoff_freq / controlLoopPwmFreq - 2) / (2 + (2 * Math.PI
* IDCB_IIR_cutoff_freq / controlLoopPwmFreq))) / constants.IIRxCoefsScaleType

7.3.1.3 Control loop

This tab enables modification of speed ramp parameters and control loop parameters like control loop output
limits and PI controllers. MCAT group and MCAT name help to locate the parameter in MCAT layout. Equation
name represents the input parameter in equations bellow.

MCAT group MCAT name Equation name Description Unit

Sample time controlLoopSampleTime Slow control loop period. This
disabled value is read from
target via FreeMASTER because
application timing is set in
embedded code by peripherals
setting. This value is accessible
only if target is not connected
and value cannot be obtained
from target.

[sec]Loop sample
time

PWM freq controlLoopPwmFreq PWM frequency [Hz]

Upper limit controlLoopLimitHigh Maximal required Q-axis current
(Speed controller's output). Q-
axis current limitation equals to
motor torque limitation.

[A]Control loop
output limits

Lower limit controlLoopLimitLow Minimal required Q-axis current
(Speed controller's output). Q-
axis current limitation equals to
motor torque limitation.

[A]

Inc up controlLoopIncUp Required speed maximal
acceleration

[rpm/sec]Speed ramp

Inc down controlLoopIncDown Required speed maximal
acceleration

[rpm/sec]

Speed Loop Kp controlLoopSLKp Speed Controller Proportional
constant in time domain

-Speed PI
controller
constants Speed Loop Ki controlLoopSLKi Speed Controller Integration

constant in time domain
-

Torque Loop Kp controlLoopTLKp Torque Controller Proportional
constant in time domain

-Torque PI
controller
constants Torque Loop Ki controlLoopTLKi Torque Controller Integration

constant in time domain
-

Table 8. Control loop tab input

Output equations (applies for saving to mX_bldc_appcofig.h and also for updating a corresponding
FreeMASTER variable):

• parametersWmax = 2 * Math.PI * parametersPP * parametersNmax / 60
• M1_SPEED_LOOP_KP_GAIN = controlLoopSLKp * parametersWmax / parametersImax
• M1_SPEED_LOOP_KI_GAIN = controlLoopSLKi * parametersWmax / parametersImax *

constants.CtrlLOOP_Ts

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
23 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

• M1_SPEED_RAMP_UP = controlLoopIncUp / 60 * parametersPP * 2 * Math.PI /parametersWmax *
constants.CtrlLOOP_Ts

• M1_SPEED_RAMP_DOWN = controlLoopIncDown / 60 * parametersPP * 2 * Math.PI /parametersWmax *
constants.CtrlLOOP_Ts

• M1_CTRL_LOOP_LIM_HIGH= controlLoopLimitHigh / 100
• M1_CTRL_LOOP_LIM_LOW = controlLoopLimitLow / 100
• M1_TORQUE_LOOP_KP_GAIN = controlLoopTLKp * parametersImax / parametersUdcbMax
• M1_TORQUE_LOOP_KI_GAIN = controlLoopTLKi * parametersImax / parametersUdcbMax *

constants.CtrlLOOP_Ts

7.3.1.4 Sensorless

This tab enables Sensorless and commutation parameters tuning and open-loop startup tuning. MCAT group
and MCAT name help to locate the parameter in MCAT layout. Equation name represents the input parameter in
equations bellow.

MCAT group MCAT name Equation name Description Unit

Timer freq sensorlessTimerFreq Forced commutation timer
frequency, calculated as Timer
input clock / Prescale factor
(128)

[Hz]Sensorless
parameters

Freewheel duration sensorlessFreewheelTime Motor Freewheel period from
any motor speed

[sec]

OL speed lim sensorlessOLspeedLim Open Loop Start-up minimal
speed to switch to close-loop
control of nominal speed

[rpm]

Cmt count sensorlessCmtCount Open Loop Start-up
commutation number of nominal
speed.

[#]

Open loop start-
up parameters

1st cmt period sensorlessCmtPeriod First commutation period [sec]

Time off sensorlessTimeOff Time off after commutation [%]Commutation
parameters Integ thr corr. sensorlessIntegThrCorr Integration threshold correction

constant with range
[%]

Table 9. Sensorless tab input

Output equations (applies for saving to mX_bldc_appcofig.h and also for updating a corresponding
FreeMASTER variable):

• M1_FREEWHEEL_T_LONG = sensorlessFreewheelTime / 0.001
• M1_FREEWHEEL_T_SHORT = sensorlessFreewheelTime / 2 / 0.001
• M1_N_START_TRH = sensorlessOLspeedLim / parametersNmax
• M1_STARTUP_CMT_PER = sensorlessCmtPeriod * sensorlessTimerFreq
• M1_CMT_T_OFF = sensorlessTimeOff / 100
• M1_SPEED_SCALE_CONST = sensorlessTimerFreq * 60 / (parametersNmax * parametersPP)
• M1_CMT_PER_MIN = sensorlessTimerFreq / (parametersNmax * parametersPP / 10)
• M1_START_CMT_ACCELER = Math.pow((60 / (sensorlessOLspeedLim * parametersPP * 6) /

sensorlessCmtPeriod), (1 / (sensorlessCmtCount - 1)))
• temp1 = 1/4 * parametersKe * (2 * Math.PI * parametersPP * parametersNnom / 60)
• temp2 = 1/2 / (parametersNnom * parametersPP * 6 / 60) * controlLoopPwmFreq * temp1
• M1_INTEG_TRH = Math.round(temp2 / parametersUdcbMax * 32768 * sensorlessIntegThrCorr / 100)

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
24 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

7.4 Motor Control Modes - How to run motor
In the "Project Tree", you can choose Speed control using the appropriate FreeMASTER tabs. To turn on or off
the application, use "M1 Application Switch" variable. Set/clear "M1 Application Switch" variable also enables/
disables all PWM channels.

Before motor starts, several conditios have to be completed:

1. Connected power supply to the inverter with the correct voltage value.
2. No pending fault. Check variable "M1 Fault Pending" in "Motor M1" project tree subblock. If there is some

value, first remove the cause of the fault, or disable fault checking. (for example in variable "M1 Fault
Enable Undervoltage")

7.4.1 Speed control

BLDC

PWM

udcb

udcb

eD

A
PI controller

PI controller
ωf

idcb

idcb idcb

ωreq

Ramp

*

DC-bus
Ripple
Elim

Filter
MA

 idcb

e

ulim
*

u* ucomp
*

commut.

Position estimation
and commutation

control

3ph LV Converter

Figure 12. Control of Brushless DC motor

For run motor in speed control, follow these steps:

1. Switch project tree subblock on "Speed".
2. In variable "M1 Speed Required" set the required speed. (i.e. 1000rpm). The motor automatically starts

spinning.
3. Observe motor speed, Back-EMF Voltage and other graphs predefined in subblock scopes and recorders.

7.5 Faults explanation
When the motor is running or during the tuning process, there may be several fault conditions. Therefore,
the motor-control example has an integrated fault indication located in the variable watch of the "Motor M1"
FreeMASTER subblock. If a fault is indicated, state machine enters the FAULT state.

Figure 13. Faults in variable watch located in "Motor M1" subblock

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
25 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

7.5.1 Variable "M1 Fault Pending"

It shows actually persisting faults, which means that the fault indicated during fault conditions is accomplished.
For example, if the source voltage is still under the undervoltage fault threshold, the undervoltage pending fault
is shown. If the fault condition disappears, the fault pending is cleared automatically. "M1 Fault Pending" is
shown in a binary format in the FreeMASTER variable watch. Each place in the variable denotes a different fault
condition.

• b 0000 0001 - the overcurrent fault is indicated. If the overcurrent fault is present, the PWMs are automatically
disabled. The fault occurs when the DC-Bus current exceeds the Imax value (current-sensing HW scale).

• b 0000 0010 - the undervoltage fault is indicated. The undervoltage fault occurs when the UDCBus voltage
(source voltage) is lower than the U DCB under threshold.

• b 0000 0100 - the overvoltage fault is indicated. The overvoltage fault occurs when the UDCBus voltage
(source voltage) is higher than the U DCB over threshold.

Figure 14. Undervoltage fault is indicated (pending)

7.5.2 Variable "M1 Fault Captured"

If any fault condition appears, the fault captured is indicated. Similar to fault pending, fault captured is shown
in the BIN format, but every fault type has its own variable ("M1 Fault Captured Over Curent" and others). For
example, if the undervoltage fault condition is accomplished, fault captured is indicated. Fault captured is also
indicated after the undervoltage fault condition disappears. The captured faults are cleared manually by writing
"Clear [1]" to "M1 Fault Clear".

Figure 15. Undervoltage fault is captured

7.5.3 Variable "M1 Fault Enable"

The fault indication can be unwanted during the tuning process. Therefore, the fault indication can be disabled
by writing "Disabled [0]" to the "M1 Fault Enable" variables.

Note: The overcurrent fault cannot be disabled.

Note: Fault thresholds are located in the "MCAT parameters" tab.

7.6 Initial motor parameters and harware configuration
Motor control examples contain two or more configuration files: m1_bldc_appconfig.h,
m2_bldc_appconfig.h, and so on. Each contains constants tuned for the selected motor (Linix 45ZWN24-40
or Teknic M-2310P for the Freedom development platform and Mige 60CST-MO1330 for the High-voltage
platform). The initial motor parameters and the hardware configuration (inverter) are to MCAT loaded from
m1_bldc_appconfig.h configuration file. There are tree ways to change motor configuration corresponding
to the connected motor.

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
26 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

1. The first way is rename the configuration file:
• In the project example folder, find configuration file to be used.
• Rename this configuration file to m1_bldc_appconfig.h.
• Rebuild project and load the code to the MCU.

2. The second way is to change motor configuration, as described in Section 7.3.
3. The last way is change motor and hardware parameters manually:

• Open the BLDC control application FreeMASTER project containing the dedicated MCAT plug-in module.
• Select the "Parameters" tab.
• Specify the parameters manually. All parameters provided in Table 10 are accessible.

Parameter Units Description Typical range

pp [-] Motor pole pairs 1-10

Iph nom [A] Motor nominal phase
current

0.5-8

Uph nom [V] Motor nominal phase
voltage

10-300

N nom [rpm] Motor nominal speed 1000-5000

Table 10. MCAT motor parameters

• Set the hardware scales—the modification of these two fields is not required when a reference to the
standard power stage board is used. These scales express the maximum measurable current and voltage
analog quantities.

• Check the fault limits—these fields are calculated using the motor parameters and hardware scales (see
Table 11).

Parameter Units Description Typical range

U DCB trip [V] Voltage value at which the
external braking resistor
switch turns on

U DCB Over ~ U DCB max

U DCB under [V] Trigger value at which
the undervoltage fault is
detected

0 ~ U DCB Over

U DCB over [V] Trigger value at which the
overvoltage fault is detected

U DCB Under ~ U max

N over [rpm] Trigger value at which the
overspeed fault is detected

N nom ~ N max

N min [rpm] Minimal actual speed value
for the sensorless control

(0.05~0.2) *N max

Table 11. Fault limits

• Check the application scales—these fields are calculated using the motor parameters and hardware
scales (see Table 12).

Parameter Units Description Typical range

N max [rpm] Speed scale >1.1 * N nom

Ke [V.sec/rad] Back EMF constant,
calculated as (Unom * 60) /
(2*π*pp*Nnom)

0.0001-1

Table 12. Application scales

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
27 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

• Check the alignment parameters—these fields are calculated using the motor parameters and hardware
scales. The parameters express the required voltage value applied to the motor during the rotor alignment
and its duration.

•
Parameter Units Description Typical range

Align current [A] Align current 0.1 - Iph nom

Align duration [sec] Align duration 0.2-10

Table 13. Alignment parameters

7.7 Control parameters tuning
This section provides a guide for running your motor in several steps. It is highly recommended to go through all
the steps carefully to eliminate any issues during the tuning process.

The tuning phases are described in the following sections.

7.7.1 Alignment tuning

For the alignment parameters, navigate to the "Parameters" MCAT tab. The alignment procedure sets the rotor
to an accurate initial position and enables you to apply full startup torque to the motor. A correct initial position is
needed mainly for high startup loads (compressors, washers, and so on). The alignment aims to have the rotor
in a stable position, without any oscillations before the startup.

• The alignment current is the value applied to the d-axis during the alignment. Increase this value for a higher
shaft load.

• The alignment duration expresses the time when the alignment routine is called. Tune this parameter to
eliminate rotor oscillations or movement at the end of the alignment process.

7.7.2 Open loop start-up tuning

Tune the start-up process by a set of parameters located in the “Sensorless” tab. Set the optimal values to
achieve a proper motor startup. An example start-up state of low-dynamic drives (fans, pumps) is shown in
(Figure 16).

1. Select the “Sensorless” tab in the FreeMASTER project tree.
2. Set the open loop speed limit parameter (OL speed lim). It is the minimal speed to switch to close loop

control.
3. Set the start-up commutation count parameter. It is the number of open loop start-up commutations to be

performed before switching to close loop control.
4. Set the first commutation period (1stcmt period). It is the time duration between zero speed and first

commutation. This parameter is responsible for acceleration during start-up.

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
28 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

5. Click the “Update target” button to write the changes to the MCU.
6. Select “AllInOne” oscilloscope in project tree and turn the application on. Observe the waveform response in

the oscilloscope:
•

Figure 16. Motor Open-Loop Startup

7.7.3 Speed ramp tuning

The “Speed” command is applied to the speed controller through a speed ramp. The ramp function contains two
increments (up and down) that express motor acceleration and deceleration per second. If the increments are
very high, they can cause an over-current fault during acceleration and an overvoltage fault during deceleration.

The increment fields are located in the “Control Loop” tab and they are accessible in both tuning modes.
Clicking the “Update Target” button writes the changes to the MCU. An example speed profile is shown in
Figure 17). The ramp down increment is set to 2000rpm/sec, while the up increment is set to 500 rpm/sec.

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
29 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

Figure 17. Speed ramp

7.7.4 Current and Speed PI controller tuning

The current and speed PI controllers constants are adjusted to the same values in fractional format by default.
The different scale for current and speed PI controller constants is the reason why they are different in s-domain
and in “Control loop” tab. The conversion relationship between controller constants in fractional and s-domain is
the following:

Current PI controller constants:

(4)

(5)

Speed PI controller constants:

(6)

(7)

Where:

KP = PI controller proportional constant

KI = PI controller integration constant

TS = Current/Speed loop sample time period

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
30 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

Imax = Phase current measurement scale

Umax = DCBus voltage measurement scale

Nmax = Mechanical speed measurement maximum limit

KX frac = Fraction coefficient

Generally, it is not recommended to change the default PI controller constants. The current PI controller output
limits the speed PI controller output to not exceed the nominal phase current of motor.

1. Select the "Speed" option from the FreeMASTER project tree.
2. Select the "Control loop" tab.
3. Tune the proportional gain:

• Set the "Speed Loop Ki" integral gain to 0.
• Set the speed ramp to 1000 rpm/sec (or higher).
• Run the motor at a convenient speed (about 30 % of the nominal speed).
• Set a step in the required speed to 40 % of Nnom.
• Adjust the proportional gain "Speed Loop Kp" until the system responds to the required value properly and

without any oscillations or excessive overshoot:
– If the "Speed Loop Kp" field is set low, the system response is slow.
– If the "Speed Loop Kp" field is set high, the system response is tighter.
– When the "Speed Loop Ki" field is 0, the system most probably does not achieve the required speed.
– To apply the changes to the MCU, click the "Update Target" button.

4. Tune the integral gain:
• Increase the "Speed Loop Ki" field slowly to minimize the difference between the required and actual

speeds to 0.
• Adjust the "Speed Loop Ki" field such that you do not see any oscillation or large overshoot of the actual

speed value while the required speed step is applied.
• To apply the changes to the MCU, click the "Update target" button.

5. The example waveforms with the correct and incorrect settings of the speed loop parameters are shown in
the following figures:
• The "Speed Loop Ki" value is low and the "Speed Actual Filtered" does not achieve the "Speed Ramp".

Figure 18. Speed controller response—SL_Ki value is low, Speed Ramp is not achieved

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
31 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

• The "Speed Loop Kp" value is low, the "Speed Actual Filtered" greatly overshoots, and the long settling
time is unwanted.

Figure 19. Speed controller response—SL_Kp value is low, Speed Actual Filtered greatly overshoots
• The speed loop response has a small overshoot and the "Speed Actual Filtered" settling time is sufficient.

Such response can be considered optimal.

Figure 20. Speed controller response—speed loop response with a small overshoot

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
32 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

8 Conclusion

This application note describes the implementation of the sensorless 3-phase BLDC motor control. The motor
control software is implemented on NXP MIMXRT1170-EVKB board with the FRDM-MC-LVBLDC NXP Freedom
development platform. The hardware-dependent part of the control software is described in Section 2. The
motor-control application timing, and the peripheral initialization are described in Section 3. The motor user
interface and remote control using FreeMASTER are described in Section 6.

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
33 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

9 Acronyms and abbreviations

Table 14 lists the acronyms and abbreviations used in this document.

Acronym Meaning

ADC Analog-to-Digital Converter

ADC_ETC ADC External Trigger Control

AN Application Note

BLDC Brushless DC motor

CPU Central Processing Unit

DC Direct Current

DRM Design Reference Manual

GPIO General-Purpose Input/Output

MCAT Motor Control Application Tuning tool

MCDRV Motor Control Peripheral Drivers

MCU Microcontroller

PI Proportional Integral controller

PWM Pulse-Width Modulation

TMR Quad Timer

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

XBAR Inter-Peripheral Crossbar Switch

Table 14. Acronyms and abbreviations

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
34 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

10 References

These references are available on www.nxp.com:

• Three-phase BLDC sensorless motor control application (document DRM144)
• BLDC Sensorless Algorithm Tuning (document AN4597)

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
35 / 41

http://www.nxp.com
https://www.nxp.com/doc/DRM144
https://www.nxp.com/docs/en/application-note/AN4597.pdf

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

11 Useful links

• MCUXpresso SDK for Motor Control www.nxp.com/sdkmotorcontrol
• Motor Control Application Tuning (MCAT) Tool
• i.MX RT Crossover MCUs
• FRDM-MC-BLDC Freedome Development Platform
• MCUXpresso IDE - Importing MCUXpresso SDK
• MCUXpresso Config Tool
• MCUXpresso SDK Builder (SDK examples in several IDEs)
• Model-Based Design Toolbox (MBDT)

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
36 / 41

https://www.nxp.com/design/designs/mcuxpresso-sdk-for-motor-control:MCUXPRESSO-SDK-MOTOR-CONTROL
https://www.nxp.com/design/training/motor-control-application-tuning-mcat-tool-pmsm-servo-tuning:TIP-MCAT-PMSM
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus:IMX-RT-SERIES
https://www.nxp.com/design/design-center/development-boards/general-purpose-mcus/nxp-freedom-development-platform-for-low-voltage-3-phase-bldc-motor-control:FRDM-MC-LVBLDC
https://www.nxp.com/video/mcuxpresso-ide-importing-mcuxpresso-sdk:MCUXPRESSO-IDE-IMPORTING-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-config-tools-pins-clocks-peripherals:MCUXpresso-Config-Tools
https://mcuxpresso.nxp.com/en/welcome
https://www.nxp.com/design/automotive-software-and-tools/model-based-design-toolbox-mbdt:MBDT

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

12 Revision history

Section 12 summarizes the changes done to the document since the initial release.

Revision number Date Substantive changes

0 Feb 2024 Initial release

Table 15. Revision history

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
37 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
38 / 41

mailto:PSIRT@nxp.com

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

Tables
Tab. 1. Available example type, supported motors

and control methods ... 2
Tab. 2. Linix 45ZWN24-40 motor parameters 3
Tab. 3. MIMXRT1170-EVKB jumper settings 5
Tab. 4. Add and remove resistors 6
Tab. 5. Maximum CPU load (fast loop) 11
Tab. 6. Constants used in equations21
Tab. 7. Parameters tab inputs21

Tab. 8. Control loop tab input23
Tab. 9. Sensorless tab input 24
Tab. 10. MCAT motor parameters27
Tab. 11. Fault limits ... 27
Tab. 12. Application scales ... 27
Tab. 13. Alignment parameters 28
Tab. 14. Acronyms and abbreviations34
Tab. 15. Revision history ...37

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
39 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

Figures
Fig. 1. Linix 45ZWN24-40 permanent magnet

synchronous motor ..3
Fig. 2. Motor-control development platform block

diagram ..3
Fig. 3. FRDM-MC-LVBLDC .. 4
Fig. 4. MIMXRT1170-EVKB board with highlighted

jumper settings ..6
Fig. 5. Hardware timing and synchronization on

i.MX RT1170 ..8
Fig. 6. Directory tree ...12
Fig. 7. Green “GO” button placed in top left-hand

corner .. 17
Fig. 8. FreeMASTER—communication is

established successfully17
Fig. 9. FreeMASTER communication setup

window ...18

Fig. 10. Default symbol file ...19
Fig. 11. FreeMASTER + MCAT layout 20
Fig. 12. Control of Brushless DC motor 25
Fig. 13. Faults in variable watch located in "Motor

M1" subblock ...25
Fig. 14. Undervoltage fault is indicated (pending) 26
Fig. 15. Undervoltage fault is captured 26
Fig. 16. Motor Open-Loop Startup 29
Fig. 17. Speed ramp ...30
Fig. 18. Speed controller response—SL_Ki value is

low, Speed Ramp is not achieved 31
Fig. 19. Speed controller response—SL_Kp value

is low, Speed Actual Filtered greatly
overshoots ...32

Fig. 20. Speed controller response—speed loop
response with a small overshoot32

BLDCRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 0 — 20 February 2024
40 / 41

NXP Semiconductors BLDCRT1170B
MCUXpresso SDK Six Step Control of 3-Phase BLDC Motors

Contents
1 Introduction .. 2
2 Hardware setup ..3
2.1 Linix 45ZWN24-40 motor3
2.2 FRDM-MC-LVBLDC ...3
2.3 i.MX RT1170-EVKB ... 5
2.3.1 Hardware assembling .. 6
3 Processors features and peripheral

settings ... 8
3.1 i.MX RT1170 ..8
3.1.1 RT1170 - Hardware timing and

synchronization .. 8
3.1.2 RT1170 - Peripheral settings 8
3.1.2.1 PWM generation - PWM19
3.1.2.2 ADC external trigger control - ADC_ETC9
3.1.2.3 Analog sensing - ADC1 and ADC29
3.1.2.4 Time event, forced commutation control -

PWM1 .. 9
3.1.2.5 Peripheral interconnection for - XBARA110
3.1.2.6 Slow-loop interrupt generation - TMR110
3.1.2.7 FreeMASTER communication - LPUART1 10
3.2 CPU load and memory usage 10
4 Project file and IDE workspace structure 12
4.1 BLDC project structure 12
5 Motor-control peripheral initialization14
6 User interface ...16
7 Remote control using FreeMASTER 17
7.1 Establishing FreeMASTER communication 17
7.2 TSA replacement with ELF file 18
7.3 Motor Control Aplication Tuning interface

(MCAT) ...19
7.3.1 MCAT tabs description 21
7.3.1.1 Application concept ..21
7.3.1.2 Parameters .. 21
7.3.1.3 Control loop ... 23
7.3.1.4 Sensorless ... 24
7.4 Motor Control Modes - How to run motor25
7.4.1 Speed control .. 25
7.5 Faults explanation ..25
7.5.1 Variable "M1 Fault Pending"26
7.5.2 Variable "M1 Fault Captured" 26
7.5.3 Variable "M1 Fault Enable"26
7.6 Initial motor parameters and harware

configuration .. 26
7.7 Control parameters tuning 28
7.7.1 Alignment tuning ..28
7.7.2 Open loop start-up tuning28
7.7.3 Speed ramp tuning .. 29
7.7.4 Current and Speed PI controller tuning30
8 Conclusion ... 33
9 Acronyms and abbreviations 34
10 References ..35
11 Useful links .. 36
12 Revision history ...37

Legal information ...38

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 20 February 2024
Document identifier: BLDCRT1170B

	1 Introduction
	2 Hardware setup
	2.1 Linix 45ZWN24-40 motor
	2.2 FRDM-MC-LVBLDC
	2.3 i.MX RT1170-EVKB
	2.3.1 Hardware assembling

	3 Processors features and peripheral settings
	3.1 i.MX RT1170
	3.1.1 RT1170 - Hardware timing and synchronization
	3.1.2 RT1170 - Peripheral settings
	3.1.2.1 PWM generation - PWM1
	3.1.2.2 ADC external trigger control - ADC_ETC
	3.1.2.3 Analog sensing - ADC1 and ADC2
	3.1.2.4 Time event, forced commutation control - PWM1
	3.1.2.5 Peripheral interconnection for - XBARA1
	3.1.2.6 Slow-loop interrupt generation - TMR1
	3.1.2.7 FreeMASTER communication - LPUART1

	3.2 CPU load and memory usage

	4 Project file and IDE workspace structure
	4.1 BLDC project structure

	5 Motor-control peripheral initialization
	6 User interface
	7 Remote control using FreeMASTER
	7.1 Establishing FreeMASTER communication
	7.2 TSA replacement with ELF file
	7.3 Motor Control Aplication Tuning interface (MCAT)
	7.3.1 MCAT tabs description
	7.3.1.1 Application concept
	7.3.1.2 Parameters
	7.3.1.3 Control loop
	7.3.1.4 Sensorless

	7.4 Motor Control Modes - How to run motor
	7.4.1 Speed control

	7.5 Faults explanation
	7.5.1 Variable "M1 Fault Pending"
	7.5.2 Variable "M1 Fault Captured"
	7.5.3 Variable "M1 Fault Enable"

	7.6 Initial motor parameters and harware configuration
	7.7 Control parameters tuning
	7.7.1 Alignment tuning
	7.7.2 Open loop start-up tuning
	7.7.3 Speed ramp tuning
	7.7.4 Current and Speed PI controller tuning

	8 Conclusion
	9 Acronyms and abbreviations
	10 References
	11 Useful links
	12 Revision history
	Legal information
	Tables
	Figures
	Contents

