PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC
Motors

Rev. 2 — 4 June 2024

User guide

Document information
Information Content

Keywords FRDM-MCXA153 , PMSM, FOC, MCAT, MID, Motor control, Sensorless control, Speed control,
Servo control, Position control

Abstract

This user guide describes the implementation of the motor-control software for 3-phase
Permanent Magnet Synchronous Motors.

https://www.nxp.com

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

1 Introduction

SDK motor control example user guide describes the implementation of the motor-control software for 3-phase
Permanent Magnet Synchronous Motors (PMSM) using following NXP platforms:

* FRDM-MCXA153
* Freedom Development Platform for Low-Voltage, 3-Phase PMSM Motor Control (FRDM-MC-LVPMSM)

The document is divided into several parts. Hardware setup, processor features, and peripheral settings are
described at the beginning of the document. The next part contains the PMSM project description and motor
control peripheral initialization. The last part describes user interface and additional example features.

Available motor control examples types with supported motors, and possible control methods are listed in
Table 1.

Table 1. Available example type, supported motors and control methods

Possible control methods in SDK example

Example type Supported motor | gcajarand | Current FOC | Sensorless | Sensored Sensored
Voltage (Torque) Speed FOC | Speed FOC | Position FOC
Linix 45ZWN24- v v v N/A N/A

40 (default motor)

Teknic M-2310P
(with ENC)

pmsm_enc
v v v v v

SDK motor control example description:

* pmsm_enc - pmsm example uses fraction arithmetic, the example contains sensored and also sensorless
field oriented vector control (FOC). This example can be used for sensor and sensorless motor control
application both. Default motor configuration is tuned for the Linix 45ZWN24-40 motor.

The SDK motor control example contains several additional features:

* FreeMASTER pmsm_frac_enc.pmpx project provides a simple and user-friendly way for algorithm tuning,
software control, debugging, and diagnostics.

* MCAT - Motor Control Application Tuning page based on the FreeMASTER runtime debugging tool.

* MID - Motor parameter identification.

The control software and the PMSM control theory, in general, are described in Sensorless PMSM Field-
Oriented Control (FOC) (document DRM148).

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
2/59

https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/nxp-freedom-development-platform-for-low-voltage-3-phase-pmsm-motor-control:FRDM-MC-LVPMSM
https://www.nxp.com/webapp/Download?colCode=DRM148
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

2 Hardware setup

The following chapter describes the used hardware and the setup needed for proper example working

2.1 Linix 45ZWN24-40 motor

The Linix 45ZWN24-40 motor is a low-voltage 3-phase permanent-magnet motor with hall sensor used in
PMSM applications. The motor parameters are listed in Table 2.

Table 2. Linix 45ZWN24-40 motor parameters

Characteristic Symbol Value Units
Rated voltage Vit 24 \%
Rated speed - 4000 RPM
Rated torque T 0.0924 Nm
Rated power P 40 w
Continuous current Ics 2.34 A
Number of pole-pairs pp 2 -

Figure 1. Linix 45ZWN24-40 permanent magnet synchronous motor

The motor has two types of connectors (cables). The first cable has three wires and is designated to power the
motor. The second cable has five wires and is designated for the hall sensors’ signal sensing. For the PMSM
sensorless application, only the power input wires are needed.

2.2 Teknic M-2310P motor

The Teknic M-2310P-LN-04K motor is a low-voltage 3-phase permanent-magnet motor used in PMSM
applications. The motor has two feedback sensors (hall and encoder). For information on the wiring of feedback
sensors, see the data sheet on the manufacturer webpage. The motor parameters are listed in Table 3.

Table 3. Teknic M-2310P motor parameters

Characteristic Symbol Value Units
Rated voltage Vit 40 \%
Rated speed - 6000 RPM
PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback

3/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Table 3. Teknic M-2310P motor parameters...continued

Characteristic Symbol Value Units
Rated torque T 0.247 Nm
Rated power P 170 W
Continuous current Ics 71 A
Number of pole-pairs pp 4 -

Figure 2. Teknic M-2310P permanent magnet synchronous motor

For the sensorless control mode, you only need the power input wires. If used with the hall or encoder sensors,
connect the sensor wires to the NXP Freedom power stage.

eE]e]7]e
B0 @& E0ET
(Wire entry view) Motor phases
Pin Color Signal Pin Color Signal
1 DRAIN x3 P DRAIN 9 16AWG BLK PHASE R
2 N/A N/A 10 | 16AWG RED PHASE S
3 GRN COMMS-T | 11 | 16AWG WHT PHASE T
4 GRN/WHT COMMR-S | 12 RED +5VDC IN
5 GRY/WHT COMMT-R | 13 BRN ENC 1
6 DRAIN x1 E DRAIN 14 ORN ENCB
| 7 BLK GND 15 BLU ENC A
8* BLU/WHT ENC A~ 16*| ORN/WHT ENC B~
Encoder wires
Figure 3. Teknic motor connector type 1
PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback

4/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Motor phases (Mating face shown) Encoder wires

Pin Color Signal Pin Color Signal

R DRAIN x3 P DRAIN L GRY/WHT COMM T-R

C 16AWG RED PHASE S U BRN ENC | |

D 16AWG WHT PHASE T G GRN COMM S-T

B 16AWG BLK PHASE R T RED +5VDC IN I

J BLU ENC A F* ORN/WHT ENC B~

K* BLU/WHT ENC A~ \% ORN ENCB I

H GRN/WHT COMMR-S | M DRAIN x1 E DRAIN
|'s BLK GND

Figure 4. Teknic motor connector type 2

2.3 FRDM-MC-LVPMSM

In a shield form factor, this evaluation board effectively turns an NXP Freedom development board or an
evaluation board into a complete motor-control reference design. It is compatible with existing NXP Freedom
development boards and evaluation boards. The Freedom motor-control headers are compatible with the
Arduino R3 pin layout.

The FRDM-MC-LVPMSM low-voltage, 3-phase Permanent Magnet Synchronous Motor (PMSM) Freedom
development platform board has a power supply input voltage of 24 VDC to 48 VDC with reverse polarity
protection circuitry. The auxiliary power supply of 5.5 VDC is created to supply the FRDM MCU boards. The
output current is up to 5 A RMS. The inverter itself is realized by a 3-phase bridge inverter (six MOSFETs) and a
3-phase MOSFET gate driver. The analog quantities (such as the 3-phase motor currents, DC-bus voltage, and
DC-bus current) are sensed on this board. There is also an interface for speed and position sensors (encoder,
hall). The block diagram of this complete NXP motor-control development kit is shown in Figure 5.

‘ Figure 5. Motor-control development platform block diagram

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
5/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

I
1
I Controler card
I
1

Power Supply

l }

Open

Polarity

1
1
I
I
1
1
Protection :
1
1
I
I

6x MOSFET

. FRDM-MC-LVPMSM Parts
Controller Card Parts

SDA ¢

A

MOSFET Predriver

Target
MCU

la, Ib, Ic »— Buttons

1
|
i
1
1
|
|
1
1
Udc, Idc :
1
1
|
|
1
1
|
1
1

Analog
Sensing

—> LEDs
Encoder — Accel
Encoder / Enc, Hall
Hall
»— Therm

Figure 6. FRDM-MC-LVPMSM

The FRDM-MC-LVPMSM board does not require a complicated setup. For more information about the Freedom

development platform, see www.nxp.com.
Note:

There might be a wrong FRDM-MC-LVPMSM series in the market (series VV19520XXX). This series
is populated with 10 mOhm shunt resistors and noisy operational amplifiers which affect phase current
measurement. The mc pmsm example is tuned for original FRDM-MC-LVPMSM board with 20 mOhm shunt

resistors.

2.4 FRDM-MCXA153

Table 4. FRDM-MCXA153 jumper settings

Jumper Setting Jumper Setting
JP2 1-2 J10 1-2
PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 4 June 2024

Document feedback
6/59

http://www.freescale.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

All others jumpers are open.

2.4.1 Hardware assembling

1. Connect the FRDM-MC-LVPMSM shield on top of the FRDM-MCXA153 board (there is only one possible
option).

2. Connect the 3-phase motor wires to the screw terminals (J7) on the Freedom PMSM power stage.

Plug the USB cable from the USB host to the Debug USB connector J15 on the FRDM board.

4. Plug the 24-V DC power supply to the DC power connector on the Freedom PMSM power stage.

w

Figure 7. Assembled Freedome system

Note: The example has been tested on the board with schematic number: SCH-90829 REVA.

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
7159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

3 Processors features and peripheral settings

This chapter describes the peripheral settings and application timing.

3.1 MCXA1xx

The MCX portfolio is a comprehensive selection of Arm® Cortex®-M based MCUSs, offering expanded scalability
with breakthrough product capabilities, simplified system design and a developer-focused experience through
the widely adopted MCUXpresso suite of software and tools. The new simplified system design offers optimal
enablement and intelligent peripherals for the intelligent edge including machine learning, wireless, voice, motor
control, analog and more. The MCX portfolio is part of NXP’s EdgeVerse™ edge computing platform.

MCXA series MCUs expands the MCX Arm® Cortex®-M33 product offerings with multiple high-speed
connectivity, operating up to 96 MHz, serial peripherals, timers, analog and low power consumption.

For more information, see MCX General-Purpose MCUs web pages.

3.1.1 Hardware timing and synchronization

Correct and precise timing is crucial for motor-control applications. Therefore, the motor-control-dedicated
peripherals take care of the timing and synchronization on the hardware layer. In addition, you can set the PWM
frequencies as a multiple of the ADC interrupt (ADC ISR) frequency where the FOC algorithm is calculated. In
this case, the PWM frequency is equal to the FOC frequency.

—
PWM_AT

PWM_AB
I

Figure 8. Hardware timing and synchronization on MCXA1xx

* The top signal shows the PWM_AT (PWM phase A - top) and PWM_AB (PWM phase A - bottom). The dead
time is emphasized at the PWM top and PWM bottom signals.

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 4 June 2024 Document feedback
8/59

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-:MCUXPRESSO
https://www.nxp.com/applications/enabling-technologies/edge-computing:EDGE-COMPUTING
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/mcx-arm-cortex-m:MCX-MCUS
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

* The eFlexPWM submodule SMO generates trigger 0 (ADC Trigger) when the counter counts to a value equal
to the VAL4 value. ADC Trigger is delayed of approximately Tdeatime/2. This delay ensures correct current
sampling at the duty cycles close to 100 %.

* When the ADC conversion is completed, the ADC_ISR (ADC interrupt) is entered. The FOC calculation is
done in this interrupt.

3.1.2 Peripheral settings

This section describes the peripherals used for the motor control. On MCXA153, three submodules from the
enhanced FlexPWM (eFlexPWM) are used for 6-channel PWM generation and 12-bit ADC for the phase
currents and DC-bus voltage measurement. The eFlexPWM and ADC are synchronized via submodule 0 from
the eFlexPWM. The following settings are located in the mc_periph init.c and peripherals.c files and
their header files.

3.1.2.1 PWM generation - FLEXPWMO0

» Six channels from three submodules are used for the 3-phase PWM generation. Submodule 0
generates the master reload at event every n" opportunity, depending on the user-defined macro
M1 FOC FREQ VS PWM FREQ.

* Submodules 1 and 2 get their clocks from submodule 0.

* The counters at submodules 1 and 2 are synchronized with the master reload signal from submodule 0.

* Submodule 0 is used for synchronization with ADC. The submodule generates the output trigger after the
PWM reload, when the counter counts to VAL4.

» Fault mode is enabled for channels A and B at submodules 0, 1, and 2 with automatic fault clearing.
Note: The PWM outputs are re-enabled at the first PWM reload after the fault input returns to zero.

* The PWM period (frequency) is determined by how long the counter takes to count from INIT to VAL1.
By default, INIT = -MODULO/2 and VAL1 = MODULO/2 -1 where MODULO = FastPeripheralClock /
M1 PWM FREQ.

* Dead time insertion is enabled. Define the dead time length in the M1 PWM DEADTIME macro.

3.1.2.2 Analog sensing - ADCO

ADCO is used for the MC analog sensing of currents and DC-bus voltage.

» The ADC operate as 12-bit with the single-ended conversion and hardware trigger selected.
» ADCO trigger source is the PWM submodule 0.

3.1.2.3 Peripheral interconnection for - XBAR

The crossbar is used to interconnect the trigger from the pwM to the ADC.

3.1.2.4 Slow-loop interrupt generation - CTIMERO

The Standard Counter or Timer CTIMER is used to generate the slow-loop interrupt.

* The slow loop is usually ten times slower than the fast loop. Therefore, the interrupt is generated after the
timer counter counts to MR[0] = FastPeripheralClock / M1_SLOW_LOOP_FREQ. The speed loop frequency
is setin the M1 SPEED LOOP_FREQ macro and equals 1000 Hz.

* An interrupt (which serves the slow-loop period) is enabled and generated at the reload event.

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
9/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

3.2 CPU load and memory usage

The following information applies to the application built using one of the following IDE: MCUXpresso IDE, IAR,
Keil MDK or CodeWarrior. The memory usage is calculated from the *.map linker file, including FreeMASTER
recorder buffer allocated in RAM. In the MCUXpresso IDE, the memory usage can be also seen after project
build in the Console window. The table below shows the maximum CPU load of the supported examples. The
CPU load is measured using the SYSTICK timer. The CPU load is dependent on the fast-loop (FOC calculation)
and slow-loop (speed loop) frequencies. The total CPU load is calculated using the following equations:

(1)

CPU;.o= cycl ff““100 9
fast= cycles 7 %
(2)

fslow
CPUg,, = cyclesslowfcpu 100 [%]

3
CPUyg= CPUjsase+ CPUge, [%] ®)

Where:

CPUs,st = the CPU load taken by the fast loop

cyclesist = the number of cycles consumed by the fast loop
fiast = the frequency of the fast-loop calculation

fcpy = CPU frequency

CPUgjow = the CPU load taken by the slow loop

cyclesgow = the number of cycles consumed by the slow loop
fsiow = the frequency of the slow-loop calculation

CPUictal = the total CPU load consumed by the motor control

Table 5. Maximum CPU load (fast loop)

MCXA153 (Release configuration)
CPU load 69.7 %

Table 6. Memory usage

FRDM-MCXA153 (Release configuration)

Readonly code memory 33288B
Readonly data memory 9234 B
Readwrite data memory 4836B

Measured CPU load and memory usage applies to the application built using IAR IDE.

Note: Memory usage and maximum CPU load can differ depending on the used IDEs and settings.

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 4 June 2024 Document feedback
10/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

4 Project file and IDE workspace structure

All the necessary files are included in one package, which simplifies the distribution and decreases the size of
the final package. The directory structure of this package is simple, easy to use, and organized logically. The
folder structure used in the IDE differs from the structure of the PMSM package installation, but it uses the same
files. The different organization is chosen due to better manipulation of folders and files in workplaces and the
possibility of adding or removing files and directories. The pack motor <board name> project includes all
the available functions and routines. This project serves for development and testing purposes.

4.1 PMSM project structure

The directory tree of the PMSM project is shown in below.

Figure 9. Directory tree

A [pack_motor_<board_name =]
i [boards]
A [=board_name =]
[cmsis_driver_examples]
A [demo_apps]
e [mc_prmsm)]
A [prnsm_snsless]
[armgce)
[iar]
[mdk]
[CMSI5]
[components]
[devices]
[docs]
A [middleware]
hd [motor_control]
[does]
[freemaster]
A [prmsm]

A [prnsm_frac]
[mc_algorithms]
[mc_cfg_ternplate]
[mc_drivers]
[mc_identification]
[c_state_maching]
[state_machine]

[rtcesl]

[tools]

The main project folder pack motor <board name>\boards\<board name>\demo apps\mc pmsm
\pmsm_snsless\ contains the following folders and files:

e iar: for the IAR Embedded Workbench IDE.

e armgcc: for the GNU Arm IDE.

e mdk: for the uVision Keil IDE.

* ml pmsm appconfig.h: contains the definitions of constants for the application control processes,
parameters of the motor and regulators, and the constants for other vector-control-related algorithms. When

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
11/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

you tailor the application for a different motor using the Motor Control Application Tuning (MCAT) tool, the tool
generates this file at the end of the tuning process.

* main.c: contains the basic application initialization (enabling interrupts), subroutines for accessing the MCU
peripherals, and interrupt service routines. The FreeMASTER communication is performed in the background
infinite loop.

* board. c: contains the functions for the UART, GPIO, and SysTick initialization.

* board.h: contains the definitions of the board LEDs, buttons, UART instance used for FreeMASTER, and so
on.

* clock config.c and .h:contains the CPU clock setup functions. These files are going to be generated
by the clock tool in the future.

* mc_periph init.c: contains the motor-control driver peripherals initialization functions that are specific for
the board and MCU used.

* mc_periph init.h:header file formc periph init.c. This file contains the macros for changing the
PWM period and the ADC channels assigned to the phase currents and board voltage.

* freemaster cfg.h:the FreeMASTER configuration file containing the FreeMASTER communication and
features setup.

* pin mux.c and .h: port configuration files. Generate these files in the pin tool.

* peripherals.c and .h: MCUXpresso Config Tool configuration files.

The main motor-control folder pack motor <board name>\middleware\motor control\ contains these
subfolders:

* pmsm: contains main PMSM motor-control functions.
* freemaster: contains the FreeMASTER project file pmsm frac.pmpx. Open this file in the FreeMASTER
tool and use it to control the application. The folder also contains the auxiliary files for the MCAT tool.

The pack motor <board name>\middleware\motor control\pmsm\pmsm frac)\ folder contains
these subfolders common to the other motor-control projects:

* mc_algorithms: contains the main control algorithms used to control the FOC and speed control loop.

* mc_cfg template: contains templates for MCUXpresso Config Tool components.

* mc_drivers: contains the source and header files used to initialize and run motor-control applications.

* mc_identification: contains the source code for the automated parameter-identification routines of the
motor.

* mc_state machine: contains the software routines that are executed when the application is in a particular
state or state transition.

* state machine: contains the state machine functions for the FAULT, INITIALIZATION, STOP, and RUN
states.

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
12/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

5 Motor-control peripheral initialization

The motor-control peripherals are initialized by calling the MCDRV_Init M1 () function during MCU startup
and before the peripherals are used. All initialization functions are in the mc_periph init.c source file and
the mc_periph init.h header file. The definitions specified by the user are also in these files. The features
provided by the functions are the 3-phase PWM generation and 3-phase current measurement, as well as the
DC-bus voltage and auxiliary quantity measurement. The principles of both the 3-phase current measurement
and the PWM generation using the Space Vector Modulation (SVM) technique are described in Sensorless
PMSM Field-Oriented Control (document DRM148).

The mc_periph init.h header file provides the following macros defined by the user:

* M1 MCDRV_ADC PERIPH INIT: this macro calls ADC peripheral initialization.

* M1 MCDRV_PWM PERIPH INIT: this macro calls PWM peripheral initialization.

* M1 _MCDRV_QD_ ENC: this macro calls QD peripheral initialization.

* M1 PWM FREQ: the value of this definition sets the PWM frequency.

* M1 FOC_FREQ VS PWM FREQ: enables you to call the fast-loop interrupt at every first, second, third, or
n"PWM reload. This is convenient when the PWM frequency must be higher than the maximal fast-loop
interrupt.

* M1 SPEED LOOP_FREQ: the value of this definition sets the speed loop frequency (TMR1 interrupt).

* M1 PWM DEADTIME: the value of the PWM dead time in nanoseconds.

M1 PWM PAIR PH[A..C]:these macros enable a simple assignment of the physical motor phases to the
PWM periphery channels (or submodules). You can change the order of the motor phases this way.

* M1 ADC[1,2] PH [A..C]:these macros assign the ADC channels for the phase current measurement.
The general rule is that at least one-phase current must be measurable on both ADC converters, and the two
remaining phase currents must be measurable on different ADC converters. The reason for this is that the
selection of the phase current pair to measure depends on the current SVM sector. If this rule is broken, a
preprocessor error is issued. For more information about the 3-phase current measurement, see Sensorless
PMSM Field-Oriented Control (document DRM148).

* M1 _ADC[1,2] UDCB: this define is used to select the ADC channel for the measurement of the DC-bus
voltage.

In the motor-control software, the following API-serving ADC and PWM peripherals are available:

* The available APIs for the ADC are:

—mcdrv_adc_t: MCDRV ADC structure data type.

—void M1 MCDRV_ADC PERIPH INIT (): this function is by default called during the ADC peripheral
initialization procedure invoked by the MCDRV_Init M1 () function and should not be called again after the
peripheral initialization is done.

—void M1 MCDRV_CURR 3PH CHAN ASSIGN (mcdrv_adc_ t*): calling this function assigns proper ADC
channels for the next 3-phase current measurement based on the SVM sector.

—void M1 MCDRV_CURR_3PH CALIB INIT (mcdrv_adc_t*): this function initializes the phase-current
channel-offset measurement.

—void M1 MCDRV CURR 3PH CALIB (mcdrv_adc_ t*): this function reads the current information from
the unpowered phases of a stand-still motor and filters them using moving average filters. The goal is to
obtain the value of the measurement offset. The length of the window for moving the average filters is set to
eight samples by default.

—void M1 MCDRV_CURR 3PH CALIB SET (mcdrv_adc_t*): this function asserts the phase-current
measurement offset values to the internal registers. Call this function after a sufficient number of
M1 MCDRV CURR 3PH CALIB() calls.

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
13/59

https://www.nxp.com/doc/DRM148
https://www.nxp.com/doc/DRM148
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

—void M1 MCDRV_ADC_GET (mcdrv_adc_t*): this function reads and calculates the actual values of the
3-phase currents, DC-bus voltage, and auxiliary quantity.
* The available APIs for the PWM are:
—mcdrv_pwma pwm3ph t: MCDRV PWM structure data type.
—void M1 MCDRV PWM PERIPH INIT: this function is by default called during the PWM periphery
initialization procedure invoked by the MCDRV Init M1 () function.

—void M1 MCDRV_PWM3PH SET (mcdrv_pwma_ pwm3ph t*): this function updates the PWM phase duty
cycles.

—void M1 MCDRV PWM3PH EN (mcdrv pwma pwm3ph t*):this function enables all PWM channels.

—void M1 MCDRV_PWM3PH DIS (mcdrv_pwma pwm3ph t*): this function disables all PWM channels.

—Dbool t M1 MCDRV PWM3PH FLT GET (mcdrv_pwma pwm3ph t*):this function returns the state of
the overcurrent fault flags and automatically clears the flags (if set). This function returns true when an
overcurrent event occurs. Otherwise, it returns false.

* The available APIs for the quadrature encoder are:

—mcdrv_gd _enc_t: MCDRV QD structure data type.

—void M1 MCDRV_QD PERIPH INIT (): this function is by default called during the QD periphery
initialization procedure invoked by the MCDRV Init M1 () function.

—void M1 MCDRV QD GET (mcdrv_qgd enc t*): this function returns the actual position and speed.

—void M1 MCDRV_QD SET DIRECTION (mcdrv_gd enc_t*): this function sets the direction of the
quadrature encoder.

—void M1 MCDRV QD SET PULSES (mcdrv gd enc t*): this function sets the number of pulses of the
quadrature encoder. S

—void M1 MCDRV_QD CLEAR (mcdrv_gd enc_t*): this function clears the internal variables and decoder
counter.

Note: Not all macros are available for every motor control example type.

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
14/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

6 User interface

The application contains the demo mode to demonstrate motor rotation. You can operate it either using the
user button, or using FreeMASTER. The NXP development boards include a user button associated with a
port interrupt (generated whenever one of the buttons is pressed). At the beginning of the ISR, a simple logic
executes and the interrupt flag clears. When you press the button, the demo mode starts. When you press the
same button again, the application stops and transitions back to the STOP state.

The other way to interact with the demo mode is to use the FreeMASTER tool. The FreeMASTER application
consists of two parts: the PC application used for variable visualization and the set of software drivers running
in the embedded application. The serial interface transfers data between the PC and the embedded application.
This interface is provided by the debugger included in the boards.

The application can be controlled using the following two interfaces:

* The user button on the development board (controlling the demo mode):

— FRDM-MCXA153 - see pin_mux.c/.h which button is configured for this function.
* Remote control using FreeMASTER (Following chapter):

— Setting a variable in the FreeMASTER Variable Watch. See chapter Section 7.4

Identify all motor parameters if you are using your own motor (different from the default motors). The automated
parameter identification is described in the following sections.

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
15/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

7 Remote control using FreeMASTER

This section provides information about the tools and recommended procedures to control the sensor/
sensorless PMSM Field-Oriented Control (FOC) application using FreeMASTER. The application contains

the embedded-side driver of the FreeMASTER real-time debug monitor and data visualization tool for
communication with the PC. It supports non-intrusive monitoring, as well as the modification of target variables
in real time, which is very useful for the algorithm tuning. Besides the target-side driver, the FreeMASTER tool
requires the installation of the PC application as well. You can download the latest version of FreeMASTER

at www.nxp.com/freemaster. To run the FreeMASTER application including the MCAT tool, double-click

the pmsm_frac_enc.pmpx file located in the middleware\motor control\freemaster folder. The
FreeMASTER appl|cat|on starts and the environment is created automatlcally, as defined in the *.pmpx file.

Note: In MCUXpresso, the FreeMASTER application can run directly from IDE in motor control/
freemaster folder.

7.1 Establishing FreeMASTER communication

The remote operation is provided by FreeMASTER via the USB interface. To control a PMSM motor using
FreeMASTER, perform the steps below:

1. Download the project from your chosen IDE to the MCU and run it.

2. Open the FreeMASTER project pmsm frac enc.pmpx . The PMSM project uses the TSA by default, so it
is not necessary to select a symbol file for FreeMASTER.

3. To establish the communication, click the communication button (the green "GQO" button in the top left-hand

corner).
&

iF @ start communication (Ctrl+G)

Open port and and start
ot communication

LI

Figure 10. Green “GO” button placed in top left-hand corner

4. If the communication is established successfully, the FreeMASTER communication status in the
bottom right-hand corner changes from "Not connected" to "RS-232 UART Communication; COMxx;
speed=115200". Otherwise, the FreeMASTER warning pop-up window appears.

R5232 UART Communication; COMS; speed=115200

Figure 11. FreeMASTER—communication is established successfully

5. To reload the MCAT HTML page and check the App ID, press F5.

6. Control the PMSM motor by writing to a control variable in a variable watch.

7. If you rebuild and download the new code to the target, turn the FreeMASTER application off and on.

If the communication is not established successfully, perform the following steps:

1. Go to the Project > Options > Comm tab and make sure that the correct COM port is selected and the
communication speed is set to 115200 bps.

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
16 /59

http://www.nxp.com/freemaster
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Opticns >

Comm l MAP Files] Pack Dir] HTML Pages] Dema Mode] Views & Bars]

Communication

 R5232 Pot: |COM_ALL | |AICOM ports will be scanned

Speed: |'I'IE-12I]'I]I j Timeowts and Retries. .. |

" Plug+n module: |

||:I|'-.-'=C;pt;.-pe=3;p|'||.|m='| :devid=FPE5&554 _EJ

[v Save settings to project file [Save settings to registry, use it as default.

Communication state on startup and on project load
(" QOpen port at startup
* Do not open port at startup
(" Store port state on exit, apply it on startup

[Store state to project file, apply upon its load Advanced...
QK | Cancel | |

Figure 12. FreeMASTER communication setup window

2. Ensure, that your computer is communicating with the plugged board. Unplug and then plug in the USB
cable and reopen the FreeMASTER project.

7.2 TSA replacement with ELF file

The FreeMASTER project for motor control example uses Target-Side Addressing (TSA) information about
variable objects and types to be retrieved from the target application by default. With the TSA feature, you
can describe the data types and variables directly in the application source code and make this information
available to the FreeMASTER tool. The tool can then use this information instead of reading symbol data from
the application’s ELF/Dwarf executable file.

FreeMASTER reads the TSA tables and uses the information automatically when an MCU board is connected.
A great benefit of using the TSA is no issues with the correct path to ELF/Dwarf file. The variables described

by TSA tables may be read-only, so even if FreeMASTER attempts to write the variable, the target MCU side
denies the value. The variables not described by any TSA tables may also become invisible and protected even
for read-only access.

The use of TSA means more memory requirements for the target. If you do not want to use the TSA feature,
you must modify the example code and FreeMASTER project.

To modify the example code, follow the steps below:

1. Open motor control project and rewrite macro FMSTR _USE TSA from 1to 0 in freemaster cfg.h file.

2. Build, download, and run motor control project.

3. Open FreeMASTER project and click to Project > Options (or use shortcut Ctri+T).

4. Click to MAP Files tab and find Default symbol file (ELF/Dwarf executable file) located in IDE output folder.

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 4 June 2024 Document feedback
17159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Opticns >

Comm MAP Files l Pack Dir] HTML Pages] Demo Mode] Views & Barz]

Default symbaol file: |am1:n_apps'-mc _pmsm‘pmam_encem Tiardebugime_pmsm.oul

File format: Binary ELF with DWARF2/DWARF4 dbg format. «| Edit
List of all valid A \boardsevikmimert 11600demo_apps'me_pmem‘pmsm_e
symbal files:
Maote: The file selected in the list will be used as default symbal file
when the project is opened
Behavior
[

[Prompt to reload symbals when symbaol file changes and show missing symbals
" Aways (% Except afterinitial project load

QK | Cancel

Figure 13. Default symbol file
5. Click OK and restart the FreeMASTER communication.

For more information, check FreeMASTER User Guide.

7.3 Motor Control Aplication Tuning interface (MCAT)

The PMSM sensor/sensorless FOC application can be easily controlled and tuned using the Motor Control
Application Tuning (MCAT) plug-in for PMSM. The MCAT for PMSM is a user-friendly page, which runs

within the FreeMASTER. The tool consists of the tab menu and workspace as shown in Figure 14. Each tab
from the tab menu (4) represents one submodule which enables tuning or controlling different application
aspects. Besides the MCAT page for PMSM, several scopes, recorders, and variables in the project tree (5) are
predefined in the FreeMASTER project file to further the motor parameter tuning and debugging simplify.

When the FreeMASTER is not connected to the target, the "Board found" line (2) shows "Board ID not found".
When the communication with the target MCU is established, the "Board found" line is read from Board ID
variable watch and displayed. If the connection is established and the board ID is not shown, press F5 to reload
the MCAT HTML page.

There are three action buttons in MCAT (3):

* Load data - MCAT input fields (for example, motor parameters) are loaded from mX_ pmsm appconfig.h
file (JSON formatted comments). Only existing mX pmsm appconfig.h files can be selected for loading.
Loaded mX pmsm_appcofig.h file is displayed in grey field (7).

» Save data - MCAT input fields (JSON formatted comments) and output macros are saved to
mX pmsm_appconfig.h file. Up to 9 files (m1-9 pmsm appconfig.h)can be selected. A pop-up window
with the user motor ID and description appears when a different mX pmsm appcofig.h file is selected. The
motor ID and description are also saved in mX pmsm appcofig.h as a JSON comment. The embedded
code includes m1 pmsm appcofig.h only at single motor control application. Therefore, saving to higher
indexed mX pmsm_appconfig.h files has no effect at the compilation stage.

* Update target - writes the MCAT calculated tuning parameters to FreeMASTER Variables, which effectively
updates the values on target MCU. These tuning parameters are updated in MCU's RAM. To write these

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
18/59

https://www.nxp.com/docs/en/user-guide/FMSTERUG.pdf
https://www.nxp.com/design/training/motor-control-application-tuning-mcat-tool-pmsm-servo-tuning:TIP-MCAT-PMSM
https://www.nxp.com/design/training/motor-control-application-tuning-mcat-tool-pmsm-servo-tuning:TIP-MCAT-PMSM
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

tuning parameters to MCU's flash memory, m1 pmsm appcofig.h must be saved, code recompiled, and
downloaded to MCU.

Every time the communication with the board is established or MCAT is refreshed by pressing F5, MCAT looks
forthe ml pmsm appconfig.h file. Apathtoml pmsm appconfig is relative to *.pmpx file. The path is
composed from the fixed defined folders name and from the following FreeMASTER variables: User Path 1,
User Path 2, Board ID, Example ID. Variables User Path 1 and User Path 2 are intended for user's custom path
tothe m1 pmsm appconfig.h. These variables are defined in example's main.c file where user can modify
them. There are several possible paths with different priority (higher to lower) and typical use case:

1. User Path 1/

2. User Path 2/

3. ../boards/Board ID/mc_pmsm/Example ID/
* typical use case during SDK example development

4. ../../../boards/Board ID/demo_ apps/mc_pmsm/Example ID/
* typical use case in the SDK package

5. ../../../boards/Board ID/demo_apps/mc_pmsm/Example ID/cm7/
* typical use case in the SDK package

6. ../../../boards/Board ID/demo_ apps/mc_pmsm/Example ID/cm33 core0/
* typical use case in the SDK package

7. ../../source/
* typical use case in the workspace

When the m1 pmsm appconfig.h is found in one of the above defined path, it is loaded into the MCAT.
Then, MCAT uses this directory for further operations (Load data, Save data). When m1 pmsm appconfig.h
is not found even in one of the path above, the default m1 pmsm appconfig.h is loaded. The default

ml pmsm_appconfig.h is located in the mcat folder. In case of default file is loaded to the MCAT, newly
saved mX_ pmsm_appconfig.h files will be placed next to the *.pmpx file.

Note: Since the path to mX pmsm appconfig.h is composed from User Path 1, User Path 2, Board ID and
Example ID, FreeMASTER must be connected to the target, and FreeMASTER variables value read prior using
Save/Load buttons.

Note: Only Update target button updates values on the target in real time. Load/Save buttons operate with
mX_pmsm_appcofig. h file only.

Note: MCAT may require Internet connection. If no Internet connection is available, CSS and icons may not be
loaded properly.

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
19/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

[prmsm_float_enc.pmps - FreeMASTER - % ‘
Fie Edt View Bplorer Projet Tools Help
FHD@ E=5.E [#] e =
Tohoma -l0-[Blru B8 E=S
[PMSM FOC Sensorless i Nar;e ch GEE [0] Lvale . [NHLT;Q
. X witc i
R teoe Contol | Choose input file... ¥ 2 Load data Choose output file... Bs Save data [@ Update target @ M1 Application State sTop ENUM
o M1 MCAT Control SPEED_FOC [3] ENUM
A W - Demo Mode Position OFF [0] ENUM
. ication concept Demeo Mode Speed OFF [0] ENUM
. n Board found: pp p M1 Position Required o rev

2 - Openioop Contro FROMMCXN947 A position and speed estimation method without position e S =,

@ ™2 6. Motor identification N M1 Speed Required o pm
*27. Constants transducer is applied for drives with Permanent Magnet M1 Speed Actual 0 Tom
8. Constants (MID) Synchranous Motor (PMSM). By integrating methods, ice. using a » Filt 2 Vol

s

Chosen file: speed reference for zero speed startup and low speed 1481 =

m1_pmsm_appeonfigh | | acceleration, and back-EMF for mid-high speed operation, the =\ e
Motor ID: Linix rotor position can be estimated and controlled over the full L — =
speed range. In order to achieve correct operation from zero . pmam_enc Ascu

. ? ant

speed, the two techniques are combined with a crossover o 1 Vector control block di Featre Fied Weskening 0 unt

- ig.1 Vector control block diagram Featre S o unt
PUTIEEREENE | function based on the speed reference. 9 9 i e ——
User Path 2 ../.|./boards/frdmmom947/demo_apps/me_p ASCI

o X W1 Fault pending b4 6000 0000 B

Parameters MCAT video manual W1 Fault Captured b# 0000 0000 Bl
I ot captured Ewm
M1 Fault Captured DCBus Undervoltage Hot captured ENUM
Current loop Enom
Lurrent ool e
e
Sneed loop ==
aom
e
Sensors ENUM
con
e
e
ciuom
com
ciom
ENUM

Online update
1-Tab content

2 - Connected board

3 - User buttons

4 - Tab menu

5 - Project Tree

6 - Variable Watch

7 - Loaded appconfig.h

&

s
.

Figure 14. FreeMASTER + MCAT layout

In the default configuration, the following tabs (4) are available:

* Application concept: welcome page with the PMSM sensor/sensorless FOC diagram and a short application
description.

* Parameters: this page enables you to modify the motor parameters, hardware and application scales
specification, alignment, and fault limits.

* Current loop: current loop Pl controller gains and output limits.

» Speed loop: this tab contains fields for the specification of the speed controller proportional and integral gains,
as well as the output limits and parameters of the speed ramp. The position proportional controller constant is
also set here.

» Sensors: this page contains the encoder parameters and position observer parameters.

» Sensorless: this page enables you to tune the parameters of the BEMF observer, tracking observer, and
open-loop startup.

* Output file: this tab shows all the calculated constants that are required by the PMSM sensor/sensorless FOC
application. It is also possible to generate the mX_pmsm_appconfig.h file, which is then used to preset all
application parameters permanently at the project rebuild.

* Online update : this tab shows actual values of variables on target and new calculated values, which can be
used to update the target variables.

Every sublock in FreeMASTER project tree (5) has defined several variables in variable watch (6).

The following sections provide simple instructions on how to identify the parameters of a connected PMSM
motor and how to tune the application appropriately.

7.3.1 MCAT tabs description

This chapter describes MCAT input parameters and equations used to calculate MCAT output (generated)
parameters. In the default configuration, the below described tabs are available. Some tabs may be missing

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 4 June 2024 Document feedback
20/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

if not supported in the embedded code. There are general constants used at MCAT calculations listed in the

following table:

Table 7. Constants used in equations

Constant Value Unit
UmaxCoeff 1.73205 -
DiscMethodFactor 2 -
IIRxCoefsScaleType 8 -
SPEED_IIR filt 100 -

7.3.1.1 Application concept

This tab is a welcome page with the PMSM sensor/sensorless FOC diagram and a short description of the

application.

7.3.1.2 Parameters

This tab enables modification of motor parameters, specification of hardware and application scales, alignment,
and fault limits. All inputs are described in the following table. MCAT group and MCAT name help to locate the
parameter in MCAT layout. Equation name represents the input parameter in equations below.

Table 8. Parameters tab inputs

MCAT group

MCAT name

Equation name

Description

Unit

Motor
parameters

PP

parametersPP

Motor number of pole-pairs.

Obtain from motor manufacturer
or use the pole-pair assistant to
determine and then fill manually.

Rs

parametersRs

Stator phase resistance. Obtain
from motor manufacturer or
use the electrical parameters
identification and then fill
manually.

[l

Ld

parametersLd

Stator direct inductance. Obtain
from motor manufacturer or
use the electrical parameters
identification and then fill
manually.

(H]

Lqg

parametersLq

Stator quadrature inductance.
Obtain from motor manufacturer
or use the electrical parameters
identification and then fill
manually.

(H]

Ke

parametersKe

Motor electrical constant. Obtain
from motor manufacturer or use
the Ke identification and then fill
manually.

[V.sec/rad]

parametersJ

Drive inertia (motor + plant). Use
the mechanical identification and
then fill manually.

[kg.m2]

Iph nom

parametersiphNom

Nominal motor current. Obtain
from motor manufacturer.

[A]

PMSMFRDMMCXA153

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2 — 4 June 2024

Document feedback
21/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Table 8. Parameters tab inputs...continued

MCAT group

MCAT name

Equation name

Description

Unit

Uph nom

parametersUphNom

Nominal motor voltage. Obtain
from motor manufacturer.

\d!

N nom

parametersNnom

Nominal motor speed. Obtain
from motor manufacturer.

[rom]

Hardware scales

| max

parametersimax

Current sensing HW scale. Keep
as-is in case of standard NXP
HW or recalculate according to
own schematic.

[A]

U DCB max

parametersUdcbMax

DCBus voltage sensing HW
scale. Keep as-is in case of
standard NXP HW or recalculate
according to own schematic.

\d!

Fault limits

U DCB trip

parametersUdcbTrip

DCBus braking resistor
threshold. Braking resistor's
transitor is turned on when
DCbus voltage exceeds this
threshold.

\d!

U DCB under

parametersUdcbUnder

DCBus under voltage fault
threshold

\d!

U DCB over

parametersUdcbOver

DCBus over voltage fault
threshold

\d!

N over

parametersNover

Over speed fault threshold

[rom]

N min

parametersNmin

Minimal closed loop speed.
When the required speed ramps
down under this threshold, the
motor control state machine
goes to freewheel state where
top and bottom transistors are
turned off and motor speeds
down freely. Applies only for
sensorless operation.

[rom]

E block

parametersEblock

E block per

parametersEblockPer

Blocked rotor detection. When
BEMF voltage drops under E
block threshold for more than E
block per (fast loop ticks), the
blocked rotor fault is detected.

\d!

Application
scales

PMSMFRDMMCXA153

N max

parametersNmax

Application speed scale. Keep
about 10 % margin above N
over.

[rom]

E max

parametersEmax

FOC BEMF Maximum Limit.

\d!

kt

parametersKt

Torque Constant.

INm/A]

UDCBIIRFO

parametersUdcblIRf0

Cut-off frequency of DCBus IIR
filter

(Hz]

Calibration duration

parametersCalibDuration

ADC (phase current offset)
calibration duration. Done every
time transitioning from STOP to
RUN.

[sec]

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2 — 4 June 2024

Document feedback

22/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Table 8. Parameters tab inputs...continued

MCAT group MCAT name Equation name Description Unit

Fault duration parametersFaultDuration After fault condition disappears, |[sec]
wait defined time to clear
pending faults bitfield and
transition to STOP state.

Freewheel duration |parametersFreewheelDuration Free-wheel state duration. [sec]
Freewheel state in entered when
ramped speed drops under N

min.
Scalar Ug min parametersScalarUgMin Scalar control voltage minimal [V]
value.
Scalar V/Hz factor |parametersScalarVHzRatio Scalar V/Hz ratio gain. [%]
ratio
Alignment Align voltage parametersAlignVoltage Motor alignment voltage. [V]
Align duration parametersAlignDuration Motor alignment duration. [sec]

Output equations

Applies for saving to mX pmsm_appconfig.h. (Pressing the Save data button)

Does NOT apply for updating the corresponding FreeMASTER variable. (Pressing Update target button)

sensorlessWmax = (2 * Math.PIl * parametersPp * parametersNmax / 60)

scalarVHzFactor = parametersUphNom * parametersScalarVHzRatio / 100 / (parametersNnom *
parametersPp * 2 * Math.PI / 60) * sensorlessWmax / parametersUmax

scalarVHzFactorShift = scalarVHzFactor > 1 ? - Math.ceil (Math.log(Math.abs(1 / scalarVHzFactor)) /
Math.log(2) - 1)

M1 U MAX (parametersUmax) = parametersUdcbMax / constants.UmaxCoeff

M1 MOTOR_PP = parametersPP

M1 I PH NOM = parameterslphNom / parametersimax

M1 I MAX = parametersimax

M1 U DCB_MAX = parametersUdcbMax

M1 U DCB_TRIP = parametersUdcbTrip / parametersUdcbMax

M1 U DCB_UNDERVOLTAGE = parametersUdcbUnder / parametersUdcbMax

M1 U DCB_OVERVOLTAGE = parametersUdcbOver / parametersUdcbMax

M1 FREQ MAX = parametersNmax /60 * parametersPp

M1 ALIGN DURATION = parametersAlignDuration / currentLoopSampleTime

M1 CALIB DURATION = parametersCalibDuration / speedLoopSampleTime

M1 FAULT DURATION = parametersFaultDuration / speedLoopSampleTime

M1 FREEWHEEL DURATION = parametersFreewheelDuration / speedLoopSampleTime
M1 _E MAX = parametersEmax

M1 E BLOCK_ TRH = parametersEblock / parametersEmax

M1 _E BLOCK_PER = parametersEblockPer

M1 N MIN = parametersNmin / parametersNmax

M1 N MAX = parametersNmax

M1 N NOM = parametersNnom / parametersNmax

M1 N OVERSPEED = parametersNover / parametersNmax

M1 UDCB_IIR BO =4*((2* Math.Pl* parametersUdcblIRfO * currentLoopSampleTime) / (2 + (2 * Math.PI *
parametersUdcblIRf0 * currentLoopSampleTime))) / constants.|IRxCoefsScaleType

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 4 June 2024 Document feedback

23/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

* M1 UDCB IIR Bl =4"%*((2* Math.Pl* parametersUdcblIRf0 * currentLoopSampleTime) /(2 + (2 * Math.PI *
parametersUdcblIRf0 * currentLoopSampleTime))) / constants.lIRxCoefsScaleType

* M1 UDCB_IIR Al =4*(-(2* Math.PI* parametersUdcblIRf0 * currentLoopSampleTime -2) / (2 + (2 *
Math.PI * parametersUdcblIRfO * currentLoopSampleTime))) / constants.lIRxCoefsScaleType

* M1 SCALAR UQ MIN = parametersScalarUgMin / parametersUmax

* M1 ALIGN VOLTAGE = parametersAlignVoltage / parametersUmax

* M1 SCALAR VHZ FACTOR GAIN = scalarVHzFactor * Math.pow(2 , -scalarVHzFactorShift)

* M1 SCALAR VHZ FACTOR SHIFT = scalarVHzFactor

* M1 SCALAR INTEG GAIN =2 * Math.PI * parametersPp * parametersNmax / 60 * currentLoopSampleTime /
Math.PI

* M1 SCALAR RAMP UP = speedLoopRampUp /60 * parametersPp * 2 * Math.PI / sensorlessWmax *
currentLoopSampleTime

* M1 SCALAR RAMP DOWN = speedLoopRampDown / 60 * parametersPp * 2 * Math.PI / sensorlessWmax *
currentLoopSampleTime

7.3.1.3 Current loop

This tab enables current loop PI controller gains and output limits tuning. All inputs are described in the
following table. MCAT group and MCAT name help to locate the parameter in MCAT layout. Equation name
represents the input parameter in equations bellow.

Table 9. Current loop tab input

MCAT group MCAT name Equation name Description Unit

Loop parameters | Sample time currentLoopSampleTime Fast control loop period. This [sec]
disabled value is read from
target via FreeMASTER because
application timing is set in
embedded code by peripherals
setting. This value is accessible
only if target is not connected
and value cannot be obtained
from target.

FO currentLoopF0 Current controller's bandwidth [Hz]

g currentLoopKsi Current controller's attenuation |-
Current PI Output limit currentLoopOutputLimit Current controllers' output [%]
controller limits voltage limit = Duty cycle limit.

Be careful setting this limit above
95 % because it affects current
sensing (Some minimal bottom
transistors on time is required).

Output equations (applies for saving to mx pmsm_appconfig.h and also for updating a corresponding
FreeMASTER variable):

* M1 CLOOP_LIMIT = currentLoopOutputLimit/ 100

* M1 D KP GAIN = ((2 * currentLoopKsi * 2 * Math.PI * currentLoopFO * parametersLd) - parametersRs) *
parametersimax / parametersUmax

* M1 D KI GAIN = ((Math.pow((2 * Math.PI * currentLoopF0), 2) * parametersLd) * currentLoopSampleTime /
constants.DiscMethodFactor) * parametersimax / parametersUmax

* M1 Q KP GAIN = ((2 * currentLoopKsi * 2 * Math.P| * currentLoopFO * parametersLq) - parametersRs) *
parametersimax / parametersUmax

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
24759

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

* M1 QO KI GAIN = ((Math.pow((2 * Math.PI * currentLoopFO0), 2) * parametersLq) * currentLoopSampleTime /
constants.DiscMethodFactor) * parametersimax / parametersUmax

7.3.1.4 Speed loop

This tab enables speed loop PI controller gains and output limits tuning, required speed ramp parameters,
feedback speed filter tuning, and position P controller gain tuning (available at sensored/encoder applications
only). MCAT group and MCAT name help to locate the parameter in MCAT layout. Equation name represents
the input parameter in equations bellow.

Table 10. Speed loop tab input
MCAT group MCAT name Equation name Description Unit

Loop parameters | Sample time speedLoopSampleTime Slow control loop period. This [sec]
disabled value is read from
target via FreeMASTER because
application timing is set in
embedded code by peripherals
setting. This value is accessible
only if target is not connected
and value cannot be obtained
from target.

FO speedLoopF0 Speed controller's bandwidth [Hz]
g speedLoopKsi Speed controller's attenuation -
Speed ramp Inc up speedLooplncUp Required speed maximal [rpm/sec]
acceleration
Inc down speedLoopincDown Required speed maximal [rpm/sec]
acceleration
Actual speed Cut-off freq speedLoopCutOffFreq Speed feedback (before entering |[Hz]
filter PI subtraction) filter bandwidth.
Speed PI Upper limit speedLoopUpperLimit Maximal required Q-axis current |[A]
controller limits (Speed controller's output). Q-

axis current limitation equals to
motor torque limitation.

Lower limit speedLoopLowerLimit Minimal required Q-axis current |[A]
(Speed controller's output). Q-
axis current limitation equals to
motor torque limitation.

Output equations (applies for saving to mx pmsm_appconfig.h and also for updating a corresponding
FreeMASTER variable):

* M1 SPEED PI PROP _GAIN =2 * speedLoopKsi * 2 * Math.PI * Math.round(speedLoopF0) * parametersJ /
parametersKt * (sensorlessWmax / parametersimax)

* M1 SPEED PI INTEG GAIN = ((Math.pow((2 * Math.PI * speedLoopF0), 2) * parametersJ) / parametersKt *
speedLoopSampleTime) * (sensorlessWmax / parametersimax)

* M1 SPEED LOOP HIGH LIMIT = speedLoopUpperLimit/parametersimax

* M1 SPEED LOOP LOW LIMIT = speedLoopLowerlLimit/parametersimax

* M1 SPEED RAMP UP = (speedLooplncUp /60 * parametersPp * 2 * Math.PI / sensorless\Wmax *
speedLoopSampleTime)

* M1 SPEED RAMP DOWN = (speedLooplncDown / 60 * parametersPp * 2 * Math.PI / sensorless\Wmax *
speedLoopSampleTime)

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
25/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

* M1 SPEED IIR B0=4*((2* Math.PI * speedLoopCutOffFreq * speedLoopSampleTime) /(2 + (2 * Math.P1 *
speedLoopCutOffFreq * speedLoopSampleTime))) / IRxCoefsScaleType

* M1 SPEED IIR Bl =4*((2* Math.Pl* speedLoopCutOffFreq * speedLoopSampleTime) / (2 + (2 * Math.PI *
speedLoopCutOffFreq * speedLoopSampleTime))) / IIRxCoefsScaleType

* M1 SPEED IIR Al =4*(-(2* Math.PI * speedLoopCutOffFreq * speedLoopSampleTime - 2) / (2 + (2 *
Math.PI * speedLoopCutOffFreq * speedLoopSampleTime))) / IIRxCoefsScaleType

7.3.1.5 Sensors

Available at sensored (encoder) applications only. This tab enables setting the encoder properties and tuning
encoder's tracking observer. MCAT group and MCAT name help to locate the parameter in MCAT layout.
Equation name represents the input parameter in equations bellow.

Table 11. Sensors tab input

MCAT group MCAT name Equation name Description Unit
Quadrature Pulse number sensorEncPulseNumber Number of quadrature encoder |[pulses]
encoder pulses. Obtain this value from

encoder manufacturer OR
estimate based on speed/
position comparison of Scalar
controlled application with
encoder processing running on
background.

Direction sensorEncDir Encoder direction / Phase A&B
order.

Minimal speed sensorEncNmin Encoder minimal speed. [rpm]

Position Sample time sensorObsrvParSampleTime Current control loop sampling [sec]
observer period. This disabled value
parameters is read from target via Free
MASTER because application
timing is set in embedded code
by peripherals setting. This value
is accessible only if target is not
connected and value cannot be
obtained from target.

FO sensorObsrvParF0 Position observer bandwidth [Hz]

g sensorObsrvParKsi Position observer attenuation -
Position P PL_Kp positionLoopPLKp Position controller proportional -
controller constant in the time domain.

constants

Output equations (applies for saving to mX pmsm appconfig.h and also for updating a corresponding
FreeMASTER variable):

» sensorWmax = (2 * Math.PI * parametersNmax / 60)
* sensorsSensorTOKp = ((4.0 * Math.PI * sensorObsrvParKsi * sensorObsrvParF0) / sensor'Wmax)
* sensorsSensorTOTheta = (sensorObsrvParSampleTime * sensorWmax / Math.PI)
* M1 POSPE TO KP_ SHIFT(sensorsSensorTOKpShift) =
Math.ceil(Math.log(Math.abs(sensorsSensorTOKp)) / Math.log(2))
* M1 POSPE_TO_KP_ GAIN = sensorsSensorTOKp * Math.pow(2, -sensorsSensorTOKpShift)
* M1 POSPE TO KI SHIFT(sensorsSensorTOKiShift) =
Math.ceil(Math.log(Math.abs(sensorsSensorTOK:i)) / Math.log(2))

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
26/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

* M1 _POSPE TO KI GAIN = sensorsSensorTOKi * Math.pow(2, -sensorsSensorTOKiShift)

* M1 POSPE _TO THETA SHIFT(sensorsSensorTOThetaShift) = Math.ceil(Math.log(Math.abs(sensorsSensor
TOTheta)) / Math.log(2))

* M1 POSPE TO THETA GAIN = sensorsSensorTOTheta * Math.pow(2 , -sensorsSensorTOThetaShift)
* M1 POSPE ENC N MIN = (1/parametersNmax) * sensorEncNmin

* M1 POSPE MECH POS GAIN = (32768 /((sensorEncPulseNumber * 4)/ 2))

* M1 POSPE ENC PULSES = sensorEncPulseNumber

* M1 POSPE_ENC DIRECTION = sensorEncDir

* M1 POS P PROP_ GAIN = positionLoopPLKp

7.3.1.6 Sensorless

This tab enables BEMF observer and Tracking observer parameters tuning and open-loop startup tuning. MCAT
group and MCAT name help to locate the parameter in MCAT layout. Equation name represents the input
parameter in equations bellow.

Table 12. Sensorless tab input

MCAT group MCAT name Equation name Description Unit
BEMF observer |FO sensorlessBemfObsrvF0 BEMF observer bandwidth [Hz]
parameters 4 sensorlessBemfObsrvKsi BEMF observer attenuation -
Tracking FO sensorlessTrackObsrvF0 Tracking observer bandwidth [Hz]
observer . . .
parameters 4 sensorlessTrackObsrvKsi Tracking observer attenuation -

TO IRR speed Cut-off freq sensorlessTrackObsrvlIRSpeed Tracking observer IIR speed [Hz]
filter CutOff filter cut-off frequency.
Open loop Startup ramp sensorlessStartupRamp Open loop startup ramp [rpm/sec]
startup
parameters Startup current sensorlessStartupCurrent Open loop startup current [A]
Merging Speed sensorlessMergingSpeed Merging speed [rpm]
Merging Coefficient |sensorlessMergingCoeff Merging coefficient (100 % = [%]
merging is done within one
electrical revolution)

Output equations (applies for saving to mX pmsm_appconfig.h and also for updating a corresponding
FreeMASTER variable):

* sensorlessToKp = (2 * sensorlessTrackObsrvKsi * 2 * Math.PI * sensorlessF0) * (1 / sensorlessWmax)
 sensorlessToKi = ((Math.pow(2 * Math.PI * sensorlessTrackObsrvFO0 , 2)) * currentLoopSampleTime) * (1 /
sensorless\WWmax)
» sensorlessTheta = currentLoopSampleTime * sensorlessWmax / Math.PI
* M1 I SCALE = (parametersLd / (parametersLd + currentLoopSampleTime * parametersRs))
* M1 U SCALE = (currentLoopSampleTime / (parametersLd + currentLoopSampleTime * parametersRs) *
(parametersUmax / parametersimax))
* M1 E SCALE = (currentLoopSampleTime / (parametersLd + currentLoopSampleTime * parametersRs) *
(parametersEmax / parametersimax))
* M1 WI SCALE = (parametersLq * currentLoopSampleTime / (parametersLd + currentLoopSampleTime *
parametersRs) * sensorlessWmax)
* M1 BEMF DQ KP GAIN = (2 * sensorlessBemfObsrvKsi * 2 * Math.P| * sensorlessBemfObsrvF0 *
parametersLd - parametersRs) * (parametersimax / parametersEmax)

PMSMFRDMMCXA153
User guide

All information provided in this document is subject to legal disclaimers.

Rev. 2 — 4 June 2024

© 2024 NXP B.V. All rights reserved.
Document feedback
27159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

* M1 BEMF DQ KI GAIN = ((parametersLd * Math.pow(2 * Math.PI * sensorlessBemfObsrvF0, 2)) *
currentLoopSampleTime) * (parametersimax / parametersEmax)

* M1 _TO_KP_SHIFT(sensorlessToKpShift)= Math.ceil(Math.log(Math.abs(sensorlessToKp)) / Math.log(2))

* M1 TO KP_GAIN = sensorlessToKp * Math.pow(2, -sensorlessToKpShift)

* M1 TO KI SHIFT(sensorlessToKiShift) = Math.ceil(Math.log(Math.abs(sensorlessToKi)) / Math.log(2))

* M1 _TO KI GAIN = sensorlessToKi * Math.pow(2, -sensorlessToKiShift)

* M1 TO THETA SHIFT(sensorlessThetaShift) = Math.ceil(Math.log(Math.abs(sensorlessTheta)) / Math.log(2))

* M1 _TO THETA GAIN = sensorlessTheta * Math.pow(2, -sensorlessThetaShift)

* M1 OL START RAMP INC = (sensorlessStartupRamp /60 * parametersPp * 2 * Math.PI / sensorlessWmax *
currentLoopSampleTime)

* M1 MERG_SPEED TRH = sensorlessMergingSpeed / parametersNmax

* M1 MERG_COEFF = ((sensorlessMergingCoeff / 100)* sensorlessMergingSpeed * parametersPp *
currentLoopSampleTime)/60

* x =2 * Math.PI * sensorlessTrackObsrvIIRSpeedCutOff * currentLoopSampleTime

* M1 TO SPEED IIR B0 =4%*(x/(2+x))/constants.lIRxCoefsScaleType

* M1 _TO SPEED IIR Bl =4*((2* Math.PI* sensorlessTrackObsrvIIRSpeedCutOff *
currentLoopSampleTime) / (2 + (2 * Math.PI * sensorlessTrackObsrvlIRSpeedCutOff *
currentLoopSampleTime))) / constants.lIRxCoefsScaleType

* M1 TO SPEED IIR Al =4*(-(2* Math.Pl* sensorlessTrackObsrvIIRSpeedCutOff *
currentLoopSampleTime - 2) / (2 + (2 * Math.PIl * sensorlessTrackObsrvlIRSpeedCutOff *
currentLoopSampleTime))) / constants.lIRxCoefsScaleType

* M1 _OL START I =sensorlessStartupCurrent/ parametersimax

7.4 Motor Control Modes - How to run motor

In the "Project Tree", you can choose between the scalar and FOC control using the appropriate FreeMASTER
tabs. The FreeMASTER variables can control the application, corresponding to the control structure selected
in the FreeMASTER project tree. This is useful for application tuning and debugging. The required control
structure must be selected in the "M1 MCAT Control" variable. To turn on or off the application, use "M1
Application Switch" variable. Set/clear "M1 Application Switch" variable also enables/disables all PWM
channels.

Before motor starts, several conditios have to be completed:

1. Connected power supply to the inverter with the correct voltage value.
2. If you want to use sensored control (encoder feedback), connect the encoder to the inverter.
3. No pending fault. Check variable "M1 Fault Pending" in "Motor M1" project tree subblock. If there is some

value, first remove the cause of the fault, or disable fault checking. (for example in variable "M1 Fault
Enable Blocked Rotor")

7.4.1 Scalar control

The scalar control diagram is shown in figure below. It is the simplest type of motor-control techniques. The ratio
between the magnitude of the stator voltage and the frequency must be kept at the nominal value. Therefore,
the control method is sometimes called Volt per Hertz (or V/Hz). The position estimation BEMF observer and
tracking observer algorithms run in the background, even if the estimated position information is not directly
used. This is useful for the BEMF observer tuning. For more information, see the Sensorless PMSM Field-
Oriented Control (document DRM148).

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
28/59

https://www.nxp.com/doc/DRM148
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Vbc
? 7
dg Uq_req SVM VSI

Ud_req=0—" |_]'
WA =S
Um =Uq_req— ap

\
\
Tee \
w Sensor \
Frequency —| 21 N -

Integrator

Figure 15. Scalar control mode

For run motor in scalar control, follow these steps:

Switch project tree subblock on "Scalar & Voltage Control".

Switch variable "M1 MCAT Control" on "SCALAR_CONTROL".

In variable "M1 Scalar Freq Required" set required frequency. (i.e. 20Hz)
Set variable "M1 Application Switch" to "1". Motor start spinning.

Observe motor speed, position, phase currents and other graphs predefined in subblock scopes and
recorders.

aroDdN -~

7.4.2 Open loop control mode

Open loop mode (its diagram is shown in figure below) is similar in function to the Scalar control mode.
However, it provides more flexibility in specifying required parameters. This mode allows you to set specific
angle and frequency, according to the following equation:

t (4)
eel = 6init + LOZT[f dt

Besides setting voltage in DQ axis, when using this mode you can also enable current controllers and specify
required currents in D and Q axis. Therefore, this function can be utilized for current controller parameter tuning.
Please, bear in mind that current controllers cannot be enabled/disabled in SPIN state (user must turn the
Application Switch OFF before enabling/disabling current controllers).

P
U dq Ua_req SVM VSI
d_req —”| |_T ,,
e | OO
Ug_req —1 ap X
\
\
Be \
Binit Sensor \
Frequency — | 2m |28, -~
Integrator
Figure 16. Voltage - Open loop control
For run motor in Voltage - Open loop control, follow these steps:
1. Switch project tree subblock on "Openloop Control".
2. Switch variable "M1 MCAT Control" on "OPEN_LOOP".
PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback

29/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

3. In variable "M1 Openloop Required Ud" and "M1 Openloop Required Uqg" set required values.
4. In variable "M1 Openloop Theta Electrical" set required initial position.
5. In variable "M1 Openloop Required Frequency Electrical" set required frequency.
6. Set variable "M1 Application Switch" to "1". Motor start spinning.
7. Observe motor speed, position, phase currents and other graphs predefined in subblock scopes and
recorders.
R ik,
Ud_req
Id_req—*
- K L o Ug req | SVM Vsl

Pl controller |J
/PMSM
—IDH B
af <

lg_req 4’@ : Uq_req r Te \\
e

\

PI controller Sensor \
id_real dq iL:(_real ap ia_real
ib_r(-:‘al
i(Lreal iBJeaI icﬁreal
af abc
e
Binit

Frequency —»| 2m |5 i

Integrator

Figure 17. Current - Open loop control

For run motor in Current - Open loop control, follow these steps:

Switch project tree subblock on "Openloop Control".

Switch variable "M1 MCAT Control" on "OPEN_LOOP".

Set variable "M1 Openloop Use | Control" to "1".

In variable "M1 Openloop Required Id" and "M1 Openloop Required Ig" set required values.
In variable "M1 Openloop Theta Electrical" set required initial position.

In variable "M1 Openloop Required Frequency Electrical" set required frequency.

Set variable "M1 Application Switch" to "1". Motor start spinning.

Observe motor speed, position, phase currents and other graphs predefined in subblock scopes and
recorders.

© N Ok WD~

7.4.3 Voltage control

The block diagram of the voltage FOC is shown in Figure 18. Unlike the scalar control, the position feedback
is closed using the BEMF observer and the stator voltage magnitude is not dependent on the motor speed.
Both the d-axis and g-axis stator voltages can be specified in the "M1 MCAT Ud Required" and "M1 MCAT Uq
Required" fields. This control method is useful for the BEMF observer functionality check.

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
30/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

il
U SVM VSI
dq a_req
Ud_req—> |J ,
ML=
Uq_req—| ap
\

Be

Sensor \

Position/speed
evaluation

Figure 18. Voltage FOC control mode

For run motor in voltage control, follow these steps:

Switch project tree subblock on "Scalar & Voltage Control".

Switch variable "M1 MCAT Control" on "VOLTAGE_FOC".

In variable "M1 MCAT Uq Required" and "M1 MCAT Ud Required" set required voltages.
Set variable "M1 Application Switch" to "1". Motor start spinning.

Observe motor speed, position, phase currents and other graphs predefined in subblock scopes and
recorders.

aorODN -

7.4.4 Current (torque) control

The current FOC (or torque) control requires the rotor position feedback and the currents transformed into a d-
g reference frame. There are two reference variables ("M1 MCAT Id Required" and "M1 MCAT Iq Required")
available for the motor control, as shown in Figure 19. The d-axis current component "M1 MCAT Id Required"
controls the rotor flux. The g-axis current component of the current "M1 MCAT Iq Required" generates torque
and, by its application, the motor starts running. By changing the polarity of the current "M1 MCAT Iq Required",
the motor changes the direction of rotation. Supposing the BEMF observer is tuned correctly, the current PI
controllers can be tuned using the current FOC control structure.

Vbc
o a—— ud_,eqL A

o Ud_req SVM Vsl

PI controller
'J (PMSM
UB_req \ \
ap X
\
\
\

U
q_req
lg_req —> l:

PI controller Sensor \

idfreal dq ioLreaI aB iaﬁreal

Ib_real

iq_real i[S_real ic_real
ap abc

Be

Position/speed
evaluation

Figure 19. Current (torque) control mode

For run motor in current control, follow these steps:

1. Switch project tree subblock on "Current Control".

2. Switch variable "M1 MCAT Control" on "CURRENT_FOC".

3. In variable "M1 MCAT Iq Required" and "M1 MCAT Id Required" set required currents.

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 4 June 2024 Document feedback
31/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

4. Set variable "M1 Application Switch" to "1". Motor start spinning.

5. Observe motor speed, position, phase currents and other graphs predefined in subblock scopes and
recorders.

7.4.5 Speed FOC control

As shown in Figure 20, the speed PMSM sensor/sensorless FOC is activated by enabling the speed FOC
control structure. Enter the required speed into the "M1 Speed Required" field. The d-axis current reference is
held at 0 during the entire FOC operation.

Vbc

d_req > Ya_req I 1
|

dq Usreq | SVM Vsl

PI controller |J
(
o JOD D)
ap

We_req 4’®—’ E lq—req ® : Uq_req r Te \\
e

\
PI controller Pl controller Sensor \
id_real dq ic(_real a ia_real
ib_real
i i i
q_real B_real c_real
ap abc
e
We real Position/speed
= evaluation

Figure 20. Speed FOC control mode

For run motor in speed FOC control, follow these steps:

1. Switch project tree subblock on "Speed Control".

2. Switch variable "M1 MCAT Control" on "SPEED_FOC".

3. Choose between sensored and sensorless control in variable "M1 MCAT POSPE Sensor".

4. In variable "M1 Speed Required" set the required speed. (i.e. 1000rpm). The motor automatically starts
spinning.

5. Observe motor speed, position, phase currents and other graphs predefined in subblock scopes and
recorders.

7.4.6 Position (servo) control

The position of PMSM sensor FOC is shown in Figure 21 (available for sensored/encoder based applications
only). The position control using the P controller can be tuned in the "Speed loop" menu tab. An encoder sensor
is required for the feedback. Without the sensor, the position control does not work. A braking resistor is missing
on the FRDM-MC-LVPMSM board. Therefore, it is necessary to set a soft speed ramp (in the "Speed loop"
menu tab) because the voltage on the DC-bus can rise when braking the quickly spinning shaft. It may cause an
overvoltage fault.

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
32/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

ld_req

on e (30

—

We_req C ;

Om_real

P controller

We_real

Pl controller

Vbc
K| e [l f
dq Ua_req SVM o] VSI
Pl controller |J
UB _req J
ap —
lq_req ® : Ug_req >
o,
Pl controller
idireal dq i(Lreal aB ia\frea\l

Sensor \

lg_real

18_real

Ib_real

Ic_real

abc

F

Figure 21. Position control mode

Position/speed

evaluation

For run motor in position (servo) control, follow these steps:

aorON -

N o

7.5 Faults explanation

Switch project tree subblock on "Position Control".
Switch variable "M1 MCAT Control" on "POSITION_CNTRL".

Swich variable "M1 MCAT POSPE Sensor" to "Encoder [1]".

In variable "M1 Position Required" set the required psition. (i.e. 10 revs).
Set variable "M1 Application Switch" to "1". The motor starts and automatically stops in the required
position.
Change "M1 Encoder Direction" if the motor does not spin. (See chapter Section 7.10.1)
Observe motor speed, position, phase currents and other graphs predefined in subblock scopes and
recorders.

When the motor is running or during the tuning process, there may be several fault conditions. Therefore,

the motor-control example has an integrated fault indication located in the variable watch of the "Motor M1"

FreeMASTER subblock. If a fault is indicated, state machine enters the FAULT state.

Variable Watch

LInit

M1 Fault Pending
M1 Fault Captured

Mame

M1 Fault Captured Over Current
M1 Fault Captured DCBus Undervoltage
M1 Fault Captured DCBus Overvoltage

M1 Fault Captured Overload

M1 Fault Captured Overspeed
M1 Fault Captured Blocked Rotor

M1 Fault Clear

M1 Fault Enable DCBus Undervaltage
M1 Fault Enable DCBus CQvervoltage
M1 Fault Enable COwverload

M1 Fault Enable Overspeed
M1 Fault Enable Blodked Rotor

Value
bg 0000 0000
b# 0000 0000
Mot captured
Mot captured
Mot captured
Mot captured
Mot captured
Mot captured
Ho request
Enabled
Enabled
Enabled
Enabled
Enabled

Figure 22. Faults in variable watch located in "Motor M1" subblock

BIN
BIN
ENUM
ENUM
ENUM
ENUM
ENUM
ENUM
ENUM
EMUIM
EMLIM
EMUIM
EMLIM
EMLIM

PMSMFRDMMCXA153

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2 — 4 June 2024

Document feedback

33/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

7.5.1 Variable "M1 Fault Pending"

It shows actually persisting faults, which means that the fault indicated during fault conditions is accomplished.
For example, if the source voltage is still under the undervoltage fault threshold, the undervoltage pending fault
is shown. If the fault condition disappears, the fault pending is cleared automatically. "M1 Fault Pending" is
shown in a binary format in the FreeMASTER variable watch. Each place in the variable denotes a different fault
condition.

* b 0000 0001 - the overcurrent fault is indicated. If the overcurrent fault is present, the PWMs are automatically
disabled. The fault occurs when the DC-Bus current exceeds the Imax value (current-sensing HW scale).

* b 0000 0010 - the undervoltage fault is indicated. The undervoltage fault occurs when the UDCBus voltage
(source voltage) is lower than the U DCB under threshold.

* b 0000 0100 - the overvoltage fault is indicated. The overvoltage fault occurs when the UDCBus voltage
(source voltage) is higher than the U DCB over threshold.

* b 0000 1000 - the overload fault is indicated. The overload fault occurs when the rotor is overloaded.

* b 0001 0000 - the overspeed fault is indicated. The overspeed fault occurs when the rotor speed exceeds the
N over threshold.

* b 0010 0000 - the block rotor fault is indicated. The block rotor fault occurs when the back-EMF voltage is
lower than the E block threshold and the duration of the drop is longer than E block per.

Figure 23. Undervoltage fault is indicated (pending)
Mame Value Lnit

M1 Fault Pending b# 0000 0010 BIN

M1 Fault Captured b# 0000 0010 BIN

M1 Fault Captured Over Current Mot captured ENUM
M1 Fault Captured DCBus Undervoltage Captured EMUM
M1 Fault Captured DCBus Overvoltage Mot captured ENUM
M1 Fault Captured Overload Not captured ENUM
M1 Fault Captured Overspeed Mot captured ENUM
M1 Fault Captured Blocked Rotor Mot captured EMUM
M1 Fault Clear Mo request ENUM
M1 Fault Enable DCBus Undervaoltage Enabled EMUM
M1 Fault Enable DCBus Cvervoltage Enabled EMUM
M1 Fault Enable Overload Enabled EMUM
M1 Fault Enable Overspeed Enabled EMLIM
M1 Fault Enable Blocked Rotor Enabled EMUIM

7.5.2 Variable "M1 Fault Captured"

If any fault condition appears, the fault captured is indicated. Similar to fault pending, fault captured is shown
in the BIN format, but every fault type has its own variable ("M1 Fault Captured Over Curent" and others). For
example, if the undervoltage fault condition is accomplished, fault captured is indicated. Fault captured is also
indicated after the undervoltage fault condition disappears. The captured faults are cleared manually by writing
"Clear [1]" to "M1 Fault Clear".

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 4 June 2024 Document feedback
34/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Mame Value Lnit

M1 Fault Pending b# 0000 0000 BIN

M1 Fault Captured b# 0000 0010 BIN

M1 Fault Captured Over Current Mot captured ENUM
M1 Fault Captured DCBus Undervoltage Captured EMUM
M1 Fault Captured DCBus Overvoltage Mot captured ENUM
M1 Fault Captured Overload Not captured ENUM
M1 Fault Captured Overspeed Mot captured ENUM
M1 Fault Captured Blocked Rotor Mot captured EMUM
M1 Fault Clear Mo request ENLIM
M1 Fault Enable DCBus Undervoltage Enabled EMUIM
M1 Fault Enable DCBus Overvoltage Enabled EMLIM
M1 Fault Enable Overload Enabled EMUM
M1 Fault Enable Overspeed Enabled EMUIM
M1 Fault Enable Blocked Rotor Enabled EMUM

Figure 24. Undervoltage fault is captured

7.5.3 Variable "M1 Fault Enable"

The fault indication can be unwanted during the tuning process. Therefore, the fault indication can be disabled
by writing "Disabled [0]" to the "M1 Fault Enable" variables.

Note: The overcurrent fault cannot be disabled.

Note: Fault thresholds are located in the "MCAT parameters" tab.

7.6 Initial motor parameters and harware configuration

Motor control examples contain two or more configuration files: m1_pmsm_appconfig.h,
m2_pmsm_appconfig.h, and so on. Each contains constants tuned for the selected motor (Linix 45ZWN24-40
or Teknic M-2310P for the Freedom development platform and Mige 60CST-MO1330 for the High-voltage
platform). The initial motor parameters and the hardware configuration (inverter) are to MCAT loaded from

ml pmsm_appconfig.h configuration file. There are tree ways to change motor configuration corresponding
to the connected motor.

1. The first way is rename the configuration file:
* In the project example folder, find configuration file to be used.
* Rename this configuration file to m1 pmsm_appconfig.h.
* Rebuild project and load the code to the MCU.
2. The second way is to change motor configuration, as described in Section 7.3.
3. The last way is change motor and hardware parameters manually:
* Open the PMSM control application FreeMASTER project containing the dedicated MCAT plug-in module.
* Select the "Parameters" tab.
¢ Specify the parameters manually. The motor parameters can be obtained from the motor data sheet
or using the PMSM parameters measurement procedure described in PMSM Electrical Parameters
Measurement (document AN4680). All parameters provided in Table 13 are accessible. The motor inertia
J expresses the overall system inertia and can be obtained using a mechanical measurement. The J
parameter is used to calculate the speed controller constant. However, the manual controller tuning can
also be used to calculate this constant.

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 4 June 2024 Document feedback
35/59

https://www.nxp.com/doc/AN4680
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Table 13. MCAT motor parameters

Parameter Units Description Typical range

pp [-] Motor pole pairs 1-10

Rs [Q] 1-phase stator resistance 0.3-50

Ld [H] 1-phase direct inductance | 0.00001-0.1

Lg [H] 1-phase quadrature 0.00001-0.1
inductance

Ke [V.sec/rad] BEMF constant 0.001-1

J [kg.mz] System inertia 0.00001-0.1

Iph nom [A] Motor nominal phase 0.5-8
current

Uph nom [V] Motor nominal phase 10-300
voltage

N nom [rpm] Motor nominal speed 1000-2000

¢ Set the hardware scales—the modification of these two fields is not required when a reference to the
standard power stage board is used. These scales express the maximum measurable current and voltage

analog quantities.

» Check the fault limits—these fields are calculated using the motor parameters and hardware scales (see

Table 14).

Table 14. Fault limits

Parameter Units Description Typical range

U DCB trip [V] Voltage value at which the |U DCB Over ~ U DCB max
external braking resistor
switch turns on

U DCB under [V] Trigger value at which 0~ U DCB Over
the undervoltage fault is
detected

U DCB over V] Trigger value at which the |U DCB Under ~ U max
overvoltage fault is detected

N over [rpm] Trigger value at which the |N nom ~ N max
overspeed fault is detected

N min [rpm] Minimal actual speed value |(0.05~0.2) *N max

for the sensorless control

¢ Check the application scales—these fields are calculated using the motor parameters and hardware

scales (see Table 15).

Table 15. Application scales

Parameter Units Description Typical range
N max [rpm] Speed scale >1.1* N nom
E block V] BEMF scale ke* Nmax
kt [Nm/A] Motor torque constant -

¢ Check the alignment parameters—these fields are calculated using the motor parameters and hardware
scales. The parameters express the required voltage value applied to the motor during the rotor alignment

and its duration.

PMSMFRDMMCXA153

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2 — 4 June 2024

Document feedback
36/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

¢ To save the modified parameters into the inner file, click the "Store data" button.

7.7 ldentifying parameters of user motor

Because the model-based control methods of the PMSM drives provide high performance (for example,
dynamic response, efficiency), obtaining an accurate model of a motor is an important part of the drive design
and control. For the implemented FOC algorithms, it is necessary to know the value of the stator resistance

Rs, direct inductance L4, quadrature inductance L4, and BEMF constant K. Unless the default PMSM motor
described above is used, the motor parameter identification is the first step in the application tuning. This
section shows how to identify user motor parameters using MID. MID is written in floating-point arithmetics.
Each MID algorithm is detailed in Section 7.8. MID is controlled via the FreeMASTER "Motor Identification" page
shown in Figure 25.

Mame Value Unit
MID: On/Off OFF ENUM
MID: State STOP ENUM
APP: Switch request Spin/MID Ho request ENUM
MID: Status MID is stopped ENUM
MID: Measurement Type PP_ASSIST ENUM
MID: Fault Mo fault ENUM
APP: State MID EMUM
APP: Fault Mo fault ENUM
DIAG: Fault Captured 0 DEC
DIAG: Fault clear 0 DEC
MID: Measured Rs 0 Ohm
MID: Measured Ld 0 H
MID: Measured Lq 0 H
MID Pp IdReqOpenLoop 0.824799
MID Fp SpeedElReq 430,893 rpm
MID: Config El Mode Estim RL 0 DEC
MID: Config El I DC nominal 5 A
MID: Config El I DC positive max 6 A
MID: Config El I DC negative max -6 A
MID: Config El I DC (estim Ld) 0 A
MID: Config El I DC (estim Lq) 5 A
MID: Config El DQ-switch Ld meas EMUM
MID: Config El I DC req (d-axis) 0 A
MID: Config El I DC req (g-axis) 0 A
MID: Config El I AC req 0 A
MID: Config El I AC frequency 0 Hz
Figure 25. MID FreeMASTER control
PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback

37159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

7.7.1 Switch between Spin and MID

Users can switch between two modes of application: Spin and MID (Motor Identification). Spin mode is used for
control PMSM (see Section 7.3). MID mode is used for motor parameters identification (see Motor parameter
identification using MID). The actual mode of application is shown in APP: State variable. The mode is changed
by writing one to APP: MID to Spin request or APP: Spin to MID request variables. The transition between Spin
and MID can be done only if the actual mode is in a defined stop state (for example, MID not in progress or
motor stopped). The result of the change mode request is shown in APP: Fault variable. MID fault occurs when
parameters identification still runs, or the MID state machine is in the fault state. A spin fault occurs when M1
Application switch variable watch is ON, or M1 Application state variable watch is not STOP.

7.7.2 Motor parameter identification using MID

The whole MID is controlled via the FreeMASTER "Variable Watch". Motor Identification (MID) sub-block shown
in Figure 25. The motor parameter identification workflow is following:

1. Set the MID: On/Off variable to OFF.

2. Select the measurement type you want to perform via the MID: Measurement Type variable:
e PP_ASSIST - Pole-pair identification assistant.

* EL_PARAMS - Electrical parameters measurement.

3. Set the measurement configuration paramers in the MID: Config set of variables.

Start the measurement by setting MID: On/Off to ON.

5. Observe the MID: Status variable which indicates whether identification runs or not. Variable MID: State
indicates actual state of the MID state machine. Variable MID: Fault indicates fault captured by estimation
algorithm (e.g. incorrect measurement parameters). Variable is cleared automatically. Variable DIAG: Fault
Captured indicates captured hardware faults (e.g. DC bus undervoltage). Variable is cleared by setting "On"
to DIAG: Fault clear variable.

6. If the measurement finishes successfully, the measured motor parameters are shown in the MID: Measured
set of variables and MID: State goes to STOP.

e

Table 16. MID: Fault variable

Fault mask Description Troubleshooting
b#0001 Error during initialization electrical Check whether inputs to the MCAA _
parameters measurement. EstimRLInit_F16 are valid.
b#0010 Electrical parameters measurement Check whether measurement
fault. Some required value cannot configuration is valid.
be reached or wrong measurement
configuration.

Table 17. DIAG: Fault Captured variable

Fault mask Description

b#0001 Overcurrent fault occurs.
b#0010 Undervoltage fault occurs.
b#0100 Overvoltage fault occurs.

7.8 MID algorithms

This section describes how each MID algorithm works.

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 4 June 2024 Document feedback
38/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

7.8.1 Stator resistance measurement

The stator resistance Ry is averaged from the DC steps generated by the algorithm. The DC step levels are
automatically derived from the currents inserted by the user. For more details, refer to the documentation of
AMCLIB_ EstimRL function from AMMCLIb.

7.8.2 Stator inductances measurement

Injection of the AC-DC currents is used for the inductances (Ly and L) estimation. Injected AC-DC currents are
automatically derived from the currents inserted by the user. The default AC current frequency is 500 Hz. For
more detail, refer to the documentation of AMCLIB EstimRL function from AMMCLib.

7.8.3 Number of pole-pair assistant

The number of pole-pairs can only be measured with a position sensor. However, there is a simple assistant

to determine the number of pole-pairs (PP _ASSIST). The number of the pp assistant performs one electrical
revolution, stops for a few seconds, and then repeats. Because the pp value is the ratio between the electrical
and mechanical speeds, it can be determined as the number of stops per one mechanical revolution. It is
recommended to refrain from counting the stops during the first mechanical revolution because the alignment
occurs during the first revolution and affects the number of stops. During the PP_ ASSIST measurement, the
current loop is enabled, and the /4 current is controlled to MID: Config Pp Id Meas. The electrical position is
generated by integrating the open-loop frequency MID: Config Pp Freq El. Required. If the rotor does not move
after the start of PP ASSIST assistant, stop the assistant, increase MID: Config Pp Id Meas, and restart the
assistant.

7.9 Electrical parameters measurement control

This section describes how to control electrical parameters measurement, which contains measuring stator
resistance Rg, direct inductance Ly and quadrature inductance L. There are available 4 modes of measurement
which can be selected by MID: Config El Mode Estim RL variable.

Function MCAA_EstimRLInit_F16 must be called before the first use of MCAA_ EstimRL _F16. Function
MCAA_EstimRL_F16 must be called periodically with sampling period F SAMPLING, which can be definied
be user. Maximum sampling frequency F_ SAMPLING is 10 kHz. In the scopes under "Motor identification"
FreeMASTER sub-block can be observed measured currents, estimated parameters etc.

7.9.1 Mode 0

This mode is automatic, inductances are measured at a single operating point. Rotor is not fixed. User has
to specify nominal current (MID: Config El | DC nominal variable). The AC and DC currents are automatically
derived from the nominal current. Frequency of the AC signal set to default 500 Hz.

The function will output stator resistance Rs, direct inductance Ly and quadrature inductance L.

7.9.2 Mode 1

DC stepping is automatic at this mode. Rotor is not fixed. Compared to the Mode 0, there will be performed an
automatic measurement of the inductances for a definied number (NUM_MEAS) of different DC current levels
using positive values of the DC current. The L4, dependency map can be seen in the "Inductances (Ld, Lq)"
recorder. User has to specify following parameters before parameters estimation:

* MID: Config EI | DC (estim Lq) - Current to determine L. In most cases nominal current.
* MID: Config EI' Il DC positive max - Maximum positive DC current for the L4, dependency map measurement.

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
39/59

https://www.nxp.com/design/automotive-software-and-tools/automotive-math-and-motor-control-library-ammclib:AMMCLIB#design-resources
https://www.nxp.com/design/automotive-software-and-tools/automotive-math-and-motor-control-library-ammclib:AMMCLIB#design-resources
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Injected AC and DC currents are automatically derived from the MID: Config El | DC (estim Lq) and MID: Config
El I DC positive max currents. Frequency of the AC signal set to default 500 Hz.

The function will output stator resistance Rs, direct inductance Ly, quadrature inductance Ly and Lyq
dependency map.

7.9.3 Mode 2

DC stepping is automatic at this mode. Rotor must be mechanically fixed after initial alignment with the first
phase. Compared to the Mode 1, there will be performed an automatic measurement of the inductances for

a definied number (NUM_MEAS) of different DC current levels using both positive and negative values of the
DC current. The estimated inductances can be seen in the "Inductances (Ld, Lq)" recorder. User has to specify
following parameters before parameters estimation:

* MID: Config EIl | DC (estim Ld) - Current to determine Lg. In most cases 0 A.

* MID: Config EI I DC (estim Lq) - Current to determine L,. In most cases nominal current.

* MID: Config EI | DC positive max - Maximum positive DC current for the L4, dependency map measurement.
In most cases nominal current.

* MID: Config EI' | DC negative max - Maximum negative DC current for the L, dependency map
measurement.

Injected AC and DC currents are automatically derived from the MID: Config El | DC (estim Ld), MID: Config El
I DC (estim Lq), MID: Config El | DC positive max and MID: Config El | DC negative max currents. Frequency of
the AC signal set to default 500 Hz.

The function will output stator resistance R, direct inductance Ly, quadrature inductance Ly and Lyq
dependency map.

7.9.4 Mode 3

This mode is manual. Rotor must be mechanically fixed after alignment with the first phase. Ry is not calculated
at this mode. The estimated inductances can be observed in the "Ld" or "Lq" scopes. The following parameters
can be changed during the runtime:

* MID: Config EI DQ-switch - Axis switch for AC signal injection (0 for injection AC signal to d-axis, 1 for
injection AC signal to g-axis).

MID: Config El | DC req (d-axis) - Required DC current in d-axis.

MID: Config El' | DC req (g-axis) - Required DC current in g-axis.

MID: Config El' | AC req - Required AC current injected to the d-axis or g-axis.

MID: Config El | AC frequency - Required frequency of the AC current injected to the d-axis or g-axis.

7.10 Control parameters tuning

To check correct current measuring and proper working of back EMF observer, follow the steps below:

1. Select the scalar control in the "M1 MCAT Control" FreeMASTER variable watch.

2. Set the "M1 Application Switch" variable to "ON". The application state changes to "RUN".

3. Set the required frequency value in the "M1 Scalar Freq Required" variable; for example, 15 Hz in the
"Scalar & Voltage Control" FreeMASTER project tree. The motor starts running.

4. Select the "Phase Currents" recorder from the "Scalar & Voltage Control" FreeMASTER project tree.

5. The optimal ratio for the V/Hz profile can be found by changing the V/Hz factor directly using MCAT
input "Scalar V/Hz factor ratio". The shape of the motor currents should be close to a sinusoidal shape
(Figure 26).

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
40/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Phase Current A Phase Current B Phase Current C

=254 L L L L)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
Index

Figure 26. Phase currents

6. Select the "Position" recorder to check the observer functionality. The difference between the "Position
Electrical Scalar" and the "Position Estimated" should be minimal (see Figure 27) for the Back-EMF position
and speed observer to work properly. The position difference depends on the motor load. The higher the
load, the bigger the difference between the positions due to the load angle.

0.000, 162.532 f— —
Position Electrical Scalar Position Estimated
150 -/
100
s0-
g o
= L
50
100
150 “/
E | |] | | | | | | | | |] |] | | | |
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Index
Figure 27. Generated and estimated positions

7. If an opposite speed direction is required, set a negative speed value into the "M1 Scalar Freq Required"
variable.
8. The proper observer functionality and the measurement of analog quantities is expected at this step.
9. Enable the voltage FOC mode in the "M1 MCAT Control" variable while the main application switch "M1
Application Switch" is turned off.
10. Switch on the main application switch on and set a non-zero value in the “M1 MCAT Uq Required” variable.
The FOC algorithm uses the estimated position to run the motor.

7.10.1 Encoder sensor setting

The encoder sensor settings are in the "Sensors" tab. The encoder sensor enables you to compute speed and
position for the sensored speed. For a proper encoder counting, set the number of encoder pulses per one
revolution and the proper counting direction. The number of encoder pulses is based on information about the

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
41/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

encoder from its manufacturer. If the encoder sensor has more pulses per revolution, the speed and position
computing is more accurate. The counting direction is provided by connecting the encoder signals to the NXP
Freedom board and also by connecting the motor phases.

To determine the direction of rotation, follow the steps below:

1. Navigate to the "Scalar & Voltage Control" tab in the project tree and select "SCALAR_CONTROL" in the
"M1 MCAT Control" variable.

. Turn on the application switch. The application state changes to "RUN".

. Set the required frequency value in the "M1 Scalar Freq Required" variable; for example, 15 Hz. The motor

starts running.

4. Check the encoder direction. Select the "Encoder Direction Scope" from the "Scalar & Voltage Control"
project tree. If the encoder direction is right, the estimated speed is equal to the measured mechanical
speed. If the measured mechanical speed is opposite to the estimated speed, the direction must be
changed. The first way is to change "M1 Encoder Direction" variable - only 0 or 1 value is allowed. The
second way is invert the encoder wires—phase A and phase B (or the other way round).

W N

M1 Speed Estimated M1 Measured Mechanical Speed

=50

pm

-100
-150
-200

-250

H TTTT TTTT TTTT TTTT TTTT TTTT

17 18 19 20 21 22 23 24 25 26 27
Time [zec]

Figure 28. Encoder direction—right direction

o N1 Speed Estimated M1 Measured Mechanical Speed

60

40

20

g ol
204
40
20 r | | | | | | | | | | | | | | 1 1 1 | | | | 1 1 1 1 | | | | |
T T T T T T T
o 0.5 1.0 15 2.0 25 3.0 35
Time [sec]
Figure 29. Encoder direction—wrong direction
PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback

4259

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

7.10.2 Alignment tuning

For the alignment parameters, navigate to the "Parameters" MCAT tab. The alignment procedure sets the rotor
to an accurate initial position and enables you to apply full startup torque to the motor. A correct initial position is
needed mainly for high startup loads (compressors, washers, and so on). The alignment aims to have the rotor
in a stable position, without any oscillations before the startup.

» The alignment voltage is the value applied to the d-axis during the alignment. Increase this value for a higher
shaft load.

* The alignment duration expresses the time when the alignment routine is called. Tune this parameter to
eliminate rotor oscillations or movement at the end of the alignment process.

7.10.3 Current loop tuning

The parameters for the current D, Q, and PI controllers are fully calculated using the motor parameters and no
action is required in this mode. If the calculated loop parameters do not correspond to the required response,
the bandwidth and attenuation parameters can be tuned.

1. Select “Openloop Control” in the FreeMASTER project tree, set “M1 MCAT Control” to “OPENLOOP_CTRL”
and switch “M1 Openloop Use | Control” on.

2. Turn the application on by switching “M1 Application Switch” on and then set “M1 Openloop Requred Id” for
rotor alignment. (Rotor alignment always uses Id, even when you are tuning the Q axis regulator)

3. Mechanically lock the motor schaft and turn the application off.

4. Set the required loop bandwidth and attenuation in MCAT “Current loop” tab and then click the “Update
target” button. The tuning loop bandwidth parameter defines how fast the loop response is while the tuning
loop attenuation parameter defines the actual overshoot magnitude.

5. Select “Current Controller Id” recorder in project tree, turn the application on and set the required step
amplitude in “M1 Openloop Requred Id”. Observe the step response in the recorder.

6. Tune the loop bandwidth and attenuation until you achieve the required response. The example waveforms
show the correct and incorrect settings of the current loop parameters:
¢ The loop bandwidth is low (100 Hz) and the settling time of the Id current is long (Figure 30).

L L L L L

T T T T T T T

0 0,005 0,010 0,015 0,020 0,025 0,030
Time [sec]

Figure 30. Slow step response of the Id current controller
¢ The loop bandwidth (300 Hz) is optimal and the response time of the Id current is sufficient (Figure 31).

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 4 June 2024 Document feedback
43 /59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

L L L L L L L L L L L
T T T T T T
0 0,005 0,010 0015 0,020 0,025 0,030
Time [sec]

Figure 31. Optimal step response of the Id current controller

* The loop bandwidth is high (700 Hz) and the response time of the Id current is very fast, but with
oscillations and overshoot (Figure 32).

1ef
141
12§
o 1oL
06t

04

o2

02

4oL

5L

sof
25
20
18§
10f

Volts

os-L

ot

Eres

L L L L L L L L L L

T T T T T T T

0 0,005 0,010 0,015 0,020 0,025 0,030
Time [sec]

Figure 32. Fast step response of the Id current controller

7.10.4 Speed ramp tuning

To tune speed ramp parameters, follow the steps below:

1. The speed command is applied to the speed controller through a speed ramp. The ramp function contains
two increments (up and down) which express the motor acceleration and deceleration per second. If the
increments are very high, they can cause an overcurrent fault during acceleration and an overvoltage fault
during deceleration. In the "Speed" scope, you can see whether the "Speed Actual Filtered" waveform
shape equals the "Speed Ramp" profile.

2. The increments are common for the scalar and speed control. The increment fields are in the "Speed loop"
tab and accessible in both tuning modes. Clicking the "Update target" button applies the changes to the
MCU. An example speed profile is shown in Figure 33. The ramp increment down is set to 500 rpm/sec and
the increment up is set to 3000 rpm/sec.

3. The startup ramp increment is in the "Sensorless" tab and its value is higher than the speed loop ramp.

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
4459

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

£

52000

69 555, 3008690 — — —

Speed Required Speed Ramp Speed Actual Fitered

3000+

2800

2600

2400

2200+

1300+

1600+

1400+

70 72 74 76 78 20 82 a4 25
Time [sec]

Figure 33. Speed profile

7.

10.5 Open loop startup

To tune open loop startup parameters, follow the steps below:

1.

W

The startup process can be tuned by a set of parameters located in the "Sensorless" tab. Two of them (ramp
increment and current) are accessible in both tuning modes. The startup tuning can be processed in all
control modes besides the scalar control. Setting the optimal values results in a proper motor startup. An
example startup state of low-dynamic drives (fans, pumps) is shown in Figure 34.

Select the "Startup” recorder from the FreeMASTER project tree.

Set the startup ramp increment typically to a higher value than the speed-loop ramp increment.

. Set the startup current according to the required startup torque. For drives such as fans or pumps, the

startup torque is not very high and can be set to 15 % of the nominal current.

. Set the required merging speed. When the open-loop and estimated position merging starts, the threshold is

mostly set in the range of 5 % ~ 10 % of the nominal speed.

. Set the merging coefficient—in the position merging process duration, 100 % corresponds to a one of an

electrical revolution. The higher the value, the faster the merge. Values close to 1 % are set for the drives
where a high startup torque and smooth transitions between the open loop and the closed loop are required.

. To apply the changes to the MCU, click the "Update Target" button.
. Select "SPEED_FOC" in the "M1 MCAT Control" variable.

. Set the required speed higher than the merging speed.

10.
11.
12.
13.

Check the startup response in the recorder.
Tune the startup parameters until you achieve an optimal response.
If the rotor does not start running, increase the startup current.

If the merging process fails (the rotor is stuck or stopped), decrease the startup ramp increment, increase
the merging speed, and set the merging coefficient to 5 %.

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 4 June 2024 Document feedback

45/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

M1 Position Open Loop ===== M1 Positio

100

[deg]

-100+

A A AN

SVTTWYVTVY

1000

[rpm]

|||||||| |||||| T S O T
= M1 5p el w— 11 Speed Acfua

/_d\

)l o
T

:"il_
_ft

g Reqg '—"l"'e-'; g

[Amps]

||||||||||||
]

o

1.0
-u.s%

<
1063
0.4 &

F02o

=]

Figure 34. Motor startup

R
0.15

010 020 0.25 0.30

7.10.6 BEMF observer tuning

The bandwidth and attenuation parameters of the BEMF and tracking observer can be tuned. To tune the
bandwidth and attenuation parameters, follow the steps below:

1. Navigate to the "Sensorless" MCAT tab.

2.
3.
4.
5.

71

Set the required bandwidth and attenuation of the BEMF observer. The bandwidth is typically set to a value
close to the current loop bandwidth.

Set the required bandwidth and attenuation of the tracking observer. The bandwidth is typically set in the
range of 10 — 20 Hz for most low-dynamic drives (fans, pumps).

To apply the changes to the MCU, click the "Update target” button.

Select the "Observer" recorder from the FreeMASTER project tree and check the observer response in the
"Observer" recorder.

0.7 Speed PI controller tuning

The motor speed control loop is a first-order function with a mechanical time constant that depends on the

mo

tor inertia and friction. If the mechanical constant is available, the Pl controller constants can be tuned

using the loop bandwidth and attenuation. Otherwise, the manual tuning of the P and | portions of the speed
controllers is available to obtain the required speed response (see Figure 35). There are dozens of approaches

tot
the

1.
2.
3.

une the PI controller constants. To set and tune the speed PI controller for a PM synchronous motor, follow
steps below:

Select the "Speed Controller" option from the FreeMASTER project tree.
Select the "Speed loop" tab.

Check the "Manual Constant Tuning" option—that is, the "Bandwidth" and "Attenuation" fields are disabled
and the "SL_Kp" and "SL_Ki" fields are enabled.

4. Tune the proportional gain:

¢ Set the "SL_Ki" integral gain to 0.

* Set the speed ramp to 1000 rpm/sec (or higher).
PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback

46 /59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

* Run the motor at a convenient speed (about 30 % of the nominal speed).

» Set a step in the required speed to 40 % of Njop,.

* Adjust the proportional gain "SL_Kp" until the system responds to the required value properly and without
any oscillations or excessive overshoot:
— If the "SL_Kp" field is set low, the system response is slow.
— If the "SL_Kp" field is set high, the system response is tighter.
— When the "SL_Ki" field is 0, the system most probably does not achieve the required speed.
— To apply the changes to the MCU, click the "Update Target" button.

5. Tune the integral gain:

¢ Increase the "SL_Ki" field slowly to minimize the difference between the required and actual speeds to 0.

» Adjust the "SL_Ki" field such that you do not see any oscillation or large overshoot of the actual speed
value while the required speed step is applied.

» To apply the changes to the MCU, click the "Update target" button.

6. Tune the loop bandwidth and attenuation until the required response is received. The example waveforms
with the correct and incorrect settings of the speed loop parameters are shown in the following figures:

¢ The "SL_Ki" value is low and the "Speed Actual Filtered" does not achieve the "Speed Ramp".

192.019, 951.089 E— — —

Speed Required Speed Ramp Speed Actual Fitered

2000
1800+
1800
1700
1600+
51500—

1400+

1300+

1200

178 180 182 188 186 188 190 192
Time [gec]

=i
@

Figure 35. Speed controller response—SL_Ki value is low, Speed Ramp is not achieved

e The "SL_Kp" value is low, the "Speed Actual Filtered" greatly overshoots, and the long settling time is

unwanted.
PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback

47159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Speed Required Speed Ramp Speed Actual Fittered

2400

2200

2000 {\V — /\v’"\._'
1300—3 v V

£
21600

1400

1200

1000

00

308 310 312 314 316 318 320 322
Time [zec]

Figure 36. Speed controller response—SL_Kp value is low, Speed Actual Filtered greatly overshoots

* The speed loop response has a small overshoot and the "Speed Actual Filtered" settling time is sufficient.
Such response can be considered optimal.

485.398, 916.264 — —
Speed Required Speed Ramp Speed Actual Fittered
200&—5 — — T
1auu—f
130&—5
17uu—f
160&—5
g 1 suu—f
14uu-f
1auu—f
1zuu-f
110&—5
1uuu—§w-—---c S o
E | I | | | | | | | | | | | | | | | | | | I | | |
484 485 488 430 432 434 435 498 500

Time [sec]

Figure 37. Speed controller response—speed loop response with a small overshoot

7.10.8 Position P controller tuning

The position control loop can be tuned using the proportional gain "M1 Position Loop Kp Gain" variable. A
proportional controller can be used to unpretend the position-control systems. The key for the optimal position
response is a proper value of the controller, which multiplies the error by the proportional gain (Kp) to get the
controller output. The predefined base value can be manually changed. An encoder sensor must be used for a
working position control. The following steps provide an example of how to set the position P controller for a PM
synchronous motor:

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
48 /59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

1. Select the "Position Controller” scope in "Position Control" tab in the FreeMASTER project tree.
2. Tune the proportional gain in the position P controller constant:
» Set a small value of "PL_Kp" (M1 Position Loop Kp Gain).

 Select the position control, and set the required position in "M1 Position Required" variable (for example;

10 revolutions).
¢ Select the "Position Controller" scope and watch the actual position response.
3. Repeat the previous steps until you achieve the required position response.

The "PL_Kp" value is low and the actual position response on the required position is very slow.

M1 Position Required 1 Position Actual
10 f —
of
sf
7{
of
f
s{
o C
1
:I | Il | Il Il Il | | | | | | | | | | | | | | Il Il Il | Il | | | | | | | | | | | | | | | Il Il Il
281 282 283 234 285 286 287 288 289 250 291
Time [sec]
Figure 38. Position controller response—PL_Kp value is low, the actual position response is very slow
The "PL_Kp" value is too high and the actual position overshoots the required position.
M1 Position Required M1 Position Actual
12_7 /\ /\
m AP N An
B—i U \./
t
Z
4
f
s AW " A ~
: U UV U V=
_2__
298 299 900 301 302 903 904 905 908 907 308
Time [sec]
Figure 39. Position controller response—PL_Kp value is too high and the actual position overshoots
The "PL_Kp" value and the actual position response are optimal.
PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback

49 /59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

M1 Position Required M1 Position Actual

lAxis
T

OTTTTT 7T TT TTTT T 17T TTTT TTTT TTT T TTTT TTTT TTTT 17T

170 171 172 173 174 175 176 177 178 173 180
Time [sec]

Figure 40. Position controller response—the actual position response is good

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
50/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

8 Conclusion

This application note describes the implementation of the sensor and sensorless field-oriented control of a 3-
phase PMSM. The motor control software is implemented on NXP FRDM-MCXA153 board with the FRDM-
MC-LVPMSM NXP Freedom development platform. The hardware-dependent part of the control software is
described in Section 2. The motor-control application timing, and the peripheral initialization are described in
Section 3. The motor user interface and remote control using FreeMASTER are described in Section 6. The
motor parameters identification theory and the identification algorithms are described in Section 7.8.

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
51/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

9 Acronyms and abbreviations

Table 18 lists the acronyms and abbreviations used in this document.

Table 18. Acronyms and abbreviations

Acronym Meaning

ADC Analog-to-Digital Converter

ACIM Asynchronous Induction Motor

ADC_ETC ADC External Trigger Control

AN Application Note

BLDC Brushless DC motor

CCM Clock Controller Module

CPU Central Processing Unit

DC Direct Current

DRM Design Reference Manual

ENC Encoder

FOC Field-Oriented Control

GPIO General-Purpose Input/Output

LPIT Low-power Periodic Interrupt Timer

LPUART Low-power Universal Asynchronous Receiver/Transmitter
MCAT Motor Control Application Tuning tool

MCDRV Motor Control Peripheral Drivers

MCU Microcontroller

PDB Programmable Delay Block

Pl Proportional Integral controller

PLL Phase-Locked Loop

PMSM Permanent Magnet Synchronous Machine

PWM Pulse-Width Modulation

QD Quadrature Decoder

TMR Quad Timer

usSB Universal Serial Bus

XBAR Inter-Peripheral Crossbar Switch

IOPAMP Internal operational amplifier
PMSMFRDMMCXA153 Allinformation provided in this document is subject to legal disclaimers. ©2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback

52/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

10 References

These references are available on www.nxp.com:

» Sensorless PMSM Field-Oriented Control (document DRM148)
» Motor Control Application Tuning (MCAT) Tool for 3-Phase PMSM (document AN4642)

e MCX General-Purpose MCUs

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 4 June 2024 Document feedback
53/59

http://www.nxp.com
https://www.nxp.com/doc/DRM148
https://www.nxp.com/doc/AN4642
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/mcx-arm-cortex-m:MCX-MCUS
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

11 Useful links

* MCUXpresso SDK for Motor Control www.nxp.com/sdkmotorcontrol
* Motor Control Application Tuning (MCAT) Tool

FRDM-MC-PMSM Freedome Development Platform

* MCUXpresso IDE - Importing MCUXpresso SDK

MCUXpresso Config Tool

MCUXpresso SDK Builder (SDK examples in several IDEs)
Model-Based Design Toolbox (MBDT)

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback
54 /59

https://www.nxp.com/design/designs/mcuxpresso-sdk-for-motor-control:MCUXPRESSO-SDK-MOTOR-CONTROL
https://www.nxp.com/design/training/motor-control-application-tuning-mcat-tool-pmsm-servo-tuning:TIP-MCAT-PMSM
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/nxp-freedom-development-platform-for-low-voltage-3-phase-pmsm-motor-control:FRDM-MC-LVPMSM
https://www.nxp.com/video/mcuxpresso-ide-importing-mcuxpresso-sdk:MCUXPRESSO-IDE-IMPORTING-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-config-tools-pins-clocks-peripherals:MCUXpresso-Config-Tools
https://mcuxpresso.nxp.com/en/welcome
https://www.nxp.com/design/automotive-software-and-tools/model-based-design-toolbox-mbdt:MBDT
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

12 Revision history

Section 12 summarizes the changes done to the document since the initial release.

Table 19. Revision history

Revision number Date Substantive changes
2 6/2024 New document template
1 2/2024 Added sensored speed and servo
control
0 11/2023 Initial release
PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 2 — 4 June 2024 Document feedback

55/59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

PMSMFRDMMCXA153

All information provided in this document is subject to legal disclaimers.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless

this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and

trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 2 — 4 June 2024

Document feedback
56 /59

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Tables
Tab. 1. Available example type, supported motors Tab. 10. Speed loop tab input ..o, 25
and control methodsccceeveveieiiiiiiiiiies 2 Tab. 11. Sensors tab input ... 26
Tab. 2. Linix 45ZWN24-40 motor parameters 3 Tab. 12. Sensorless tab inputcoccciiiiiieeenen. 27
Tab. 3. Teknic M-2310P motor parameters 3 Tab. 13. MCAT motor parameterscccceeeeeeeeeeeeeeennn. 36
Tab. 4. FRDM-MCXA153 jumper settings 6 Tab. 14. Fault Imits ..., 36
Tab. 5. Maximum CPU load (fast loop)ccccceeeneeee. 10 Tab. 15. Application scalescooccciiiriiieeenenenen. 36
Tab. 6. Memory USageccoeeiieeieeeiiiiiee e 10 Tab. 16. MID: Fault variableccccoiiiiiiiiiie 38
Tab. 7. Constants used in equationsccccueee 21 Tab. 17. DIAG: Fault Captured variable 38
Tab. 8. Parameters tab inputscccoooiiiiiiiiis 21 Tab. 18. Acronyms and abbreviations 52
Tab. 9. Current loop tab input ... 24 Tab. 19. Revision historycccoocoiiiiiiiieeeeee 55
PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide

Rev. 2 — 4 June 2024

Document feedback
57159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Figures

Fig. 1. Linix 45ZWN24-40 permanent magnet Fig. 23. Undervoltage fault is indicated (pending) 34
SYNCchronous Motorccccceriiiiiiiee e 3 Fig. 24. Undervoltage fault is captured 35

Fig. 2. Teknic M-2310P permanent magnet Fig. 25. MID FreeMASTER controlccccccoeiieennn. 37
SYNCchronous Motorccccceriiiiiiieeiiiiiee e 4 Fig. 26. Phase currentscccooiiiiiiiiiii e 41

Fig. 3. Teknic motor connector type 1cccceeviiieenen. 4 Fig. 27. Generated and estimated positions 41

Fig. 4. Teknic motor connector type 2ccccoeeiieeenen. 5 Fig. 28. Encoder direction—right direction 42

Fig. 5. Motor-control development platform block Fig. 29. Encoder direction—wrong direction 42
diagram ... 5 Fig. 30. Slow step response of the Id current

Fig. 6. FRDM-MC-LVPMSM ... 6 CONLIOIlEr .o 43

Fig. 7. Assembled Freedome systemcccccceeee. 7 Fig. 31. Optimal step response of the Id current

Fig. 8. Hardware timing and synchronization on CONLIOIlEr .o 44
MOXATXX ettt 8 Fig. 32. Fast step response of the Id current

Fig. 9. Directory treeooooceiiiii e 11 CONLIOIlEr .o 44

Fig. 10. Green “GO” button placed in top left-hand Fig. 33. Speed profilecccoeiiiiiiieiie e 45
(o0 4 o[- SRR 16 Fig. 34. Motor startupcccceeeeeiiiiieee e 46

Fig. 11. FreeMASTER—communication is Fig. 35. Speed controller response—SL_Ki value is
established successfullycccccoiiiiiiinies 16 low, Speed Ramp is not achieved 47

Fig. 12. FreeMASTER communication setup Fig. 36. Speed controller response—SL_Kp value
WINAOW .ot 17 is low, Speed Actual Filtered greatly

Fig. 13. Default symbol fileccooeiiiiiiiiie 18 OVErshoOtSoocviiiiiii e 48

Fig. 14. FreeMASTER + MCAT layoutccccecneeee. 20 Fig. 37. Speed controller response—speed loop

Fig. 15. Scalar control modecccoociiiiiiiiiieeee 29 response with a small overshoot 48

Fig. 16. Voltage - Open loop controlcccceeeenne 29 Fig. 38. Position controller response—PL_Kp value

Fig. 17. Current - Open loop controlccccceeeeenne 30 is low, the actual position response is very

Fig. 18. Voltage FOC control modecccccocciiiernnne 31 SIOW e 49

Fig. 19. Current (torque) control modec..ccceeee.. 31 Fig. 39. Position controller response—PL_Kp value

Fig. 20. Speed FOC control modeccocceeeeiiiineennn. 32 is too high and the actual position

Fig. 21. Position control modecccccceeiiiiiiiiiieenn. 33 OVErshootSocceiiiiiiii e 49

Fig. 22. Faults in variable watch located in "Motor Fig. 40. Position controller response—the actual
M1" subblockccevniii 33 position response is goodccccceereeiiiiennn. 50

PMSMFRDMMCXA153 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide

Rev. 2 — 4 June 2024

Document feedback
58 /59

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

PMSMFRDMMCXA153

MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Contents
1 Introduction ..., 2 7.9 Electrical parameters measurement control39
2 Hardware setupccccoovrmmrmrmrrerre s 3 7.9.1 Mode O ... 39
2.1 Linix 45ZWN24-40 MOtOrcccevveervriieeneeninnns 3 7.9.2 MOdE 1 e 39
2.2 Teknic M-2310P mMOtorccooiiiieeiiiiieee e 3 793 Mode 2 . 40
23 FRDM-MC-LVPMSMcccoiiiiiiiiiiiieeieeee 5 79.4 Mode 3 ..o 40
24 FRDM-MCXA1T53 ...t 6 7.10 Control parameters tuningccccceeeeiiineenn. 40
241 Hardware assemblingcccooiiiiiiiiiiiineene 7 7.10.1 Encoder sensor settingccoccooiiiiiiiennis 41
3 Processors features and peripheral 7.10.2 Alignment tuningccccoeiiiiiiiiie 43
SettiNGS -oooiie e 8 7.10.3 Current [00p tUNING ...c..ooiiiiiiiiiee e 43
3.1 MOCXATXX erriiieeeieeeee e e e e 8 7.10.4 Speed ramp tuNiNgccooeeiiiiei e 44
3.1.1 Hardware timing and synchronization 8 7.10.5 Open loop startupcccccvvimiiieiiiieeeeeeeeeeeeee, 45
3.1.2 Peripheral settingscccooooiiiiiiie 9 7.10.6 BEMF observer tuningccoccooieeiiiiiieneenns 46
3.1.2.1 PWM generation - FLEXPWMOcccooueeee. 9 7.10.7 Speed PI controller tuningccccceeeiiiee.n. 46
3.1.2.2 Analog sensing - ADCOccooeeeiiiiiiieeeeiieenn. 9 7.10.8 Position P controller tuningcccoocoiiiiiie 48
3.1.2.3 Peripheral interconnection for - XBAR 9 8 CoNnClUSION ... 51
3.1.2.4 Slow-loop interrupt generation - CTIMERO 9 9 Acronyms and abbreviations 52
3.2 CPU load and memory usagecccccceeeueeeen. 10 10 References ... 53
4 Project file and IDE workspace structure 11 1" Useful links ... 54
41 PMSM project structureooceeieiiiinnene. 11 12 Revision history ... 55
5 Motor-control peripheral initialization 13 Legal information ..o 56
6 User interface ... 15
7 Remote control using FreeMASTER 16
71 Establishing FreeMASTER communication 16
7.2 TSA replacement with ELF file 17
7.3 Motor Control Aplication Tuning interface
(MCAT) et 18
7.3.1 MCAT tabs descriptionc....ccceeeiiiiiiininnns 20
7.3.1.1 Application conceptcccceeeiiiiiiiiiiiiiiii, 21
7.3.1.2 Parameterscccooiiiiiiiiiee e 21
7.31.3 Current l00p ..oooeeeiiiiii e 24
7.31.4 Speed lo0p ..vvveeiieieiieeee e, 25
7.3.1.5 SENSOIS .ooiiiiiiiiie et 26
7.3.1.6 SENSOrIESS ...oeiiiiiiiiiieeeeiiiee e 27
7.4 Motor Control Modes - How to run motor 28
741 Scalar control ... 28
74.2 Open loop control modeccccvvvviviieeeenennnn. 29
7.4.3 Voltage controlcccceiiiiiiiiiiiie e 30
744 Current (torque) controlcccccooiiiiiienines 31
745 Speed FOC controlcoooeiiiiiiiiieeeeeee, 32
7.4.6 Position (servo) controlcccccoeiiiiiiennnis 32
7.5 Faults explanationc.ccccccooiiiiiiiiiiiiniiienes 33
7.5.1 Variable "M1 Fault Pending"ccccocoiiee. 34
752 Variable "M1 Fault Captured" 34
7.5.3 Variable "M1 Fault Enable"c.ccccocoie. 35
7.6 Initial motor parameters and harware
configuration ... 35
7.7 Identifying parameters of user motor 37
7.71 Switch between Spinand MID 38
7.7.2 Motor parameter identification using MID 38
7.8 MID algorithmscooiiiiiiiiiiii e 38
7.8.1 Stator resistance measurement 39
7.8.2 Stator inductances measurement 39
7.8.3 Number of pole-pair assistantcccccc......... 39

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.

Document feedback

Date of release: 4 June 2024
Document identifier: PMSMFRDMMCXA153

For more information, please visit: https://www.nxp.com

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

	1 Introduction
	2 Hardware setup
	2.1 Linix 45ZWN24-40 motor
	2.2 Teknic M-2310P motor
	2.3 FRDM-MC-LVPMSM
	2.4 FRDM-MCXA153
	2.4.1 Hardware assembling

	3 Processors features and peripheral settings
	3.1 MCXA1xx
	3.1.1 Hardware timing and synchronization
	3.1.2 Peripheral settings
	3.1.2.1 PWM generation - FLEXPWM0
	3.1.2.2 Analog sensing - ADC0
	3.1.2.3 Peripheral interconnection for - XBAR
	3.1.2.4 Slow-loop interrupt generation - CTIMER0

	3.2 CPU load and memory usage

	4 Project file and IDE workspace structure
	4.1 PMSM project structure

	5 Motor-control peripheral initialization
	6 User interface
	7 Remote control using FreeMASTER
	7.1 Establishing FreeMASTER communication
	7.2 TSA replacement with ELF file
	7.3 Motor Control Aplication Tuning interface (MCAT)
	7.3.1 MCAT tabs description
	7.3.1.1 Application concept
	7.3.1.2 Parameters
	7.3.1.3 Current loop
	7.3.1.4 Speed loop
	7.3.1.5 Sensors
	7.3.1.6 Sensorless

	7.4 Motor Control Modes - How to run motor
	7.4.1 Scalar control
	7.4.2 Open loop control mode
	7.4.3 Voltage control
	7.4.4 Current (torque) control
	7.4.5 Speed FOC control
	7.4.6 Position (servo) control

	7.5 Faults explanation
	7.5.1 Variable "M1 Fault Pending"
	7.5.2 Variable "M1 Fault Captured"
	7.5.3 Variable "M1 Fault Enable"

	7.6 Initial motor parameters and harware configuration
	7.7 Identifying parameters of user motor
	7.7.1 Switch between Spin and MID
	7.7.2 Motor parameter identification using MID

	7.8 MID algorithms
	7.8.1 Stator resistance measurement
	7.8.2 Stator inductances measurement
	7.8.3 Number of pole-pair assistant

	7.9 Electrical parameters measurement control
	7.9.1 Mode 0
	7.9.2 Mode 1
	7.9.3 Mode 2
	7.9.4 Mode 3

	7.10 Control parameters tuning
	7.10.1 Encoder sensor setting
	7.10.2 Alignment tuning
	7.10.3 Current loop tuning
	7.10.4 Speed ramp tuning
	7.10.5 Open loop startup
	7.10.6 BEMF observer tuning
	7.10.7 Speed PI controller tuning
	7.10.8 Position P controller tuning

	8 Conclusion
	9 Acronyms and abbreviations
	10 References
	11 Useful links
	12 Revision history
	Legal information
	Tables
	Figures
	Contents

