
Deeptrust for Cortex-M

SPEC98T17
Revision E
06/19/2017

Maxim Integrated, Inc.
160 Rio Robles

San Jose, CA 95134

Deeptrust for Cortex-M

Disclaimer

LIFE SUPPORT POLICY

MAXIM’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUP-
PORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESI-
DENT AND GENERAL COUNSEL OF MAXIM INTEGRATED PRODUCTS, INC.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support
or sustain life and whose failure to perform when properly used in accordance with instructions for use provided
in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any
component in a life support device or system whose failure to perform can be reasonably expected to cause the
failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2017 by Maxim Integrated, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded. MAXIM IN-
TEGRATED, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF AC-
CURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT.
MAXIM ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT
RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according to the
general principles of electrical and mechanical engineering or registered trademarks of Maxim Integrated, Inc. All
other product or service names are the property of their respective owners.

ARM® and Thumb® are registered trademarks of ARM Limited in the European Union and other countries. All
other product or service names are the property of their respective owners.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 2

Deeptrust for Cortex-M

Contents

1 Document details 1

1.1 Release Notes . 1

2 Copyright Notice 3

3 Trademarks 4

4 Introduction 5

5 Security Architecture Presentation 7

5.1 Primer on Cortex-M security mechanisms . 7

5.2 Hypervisor-based software isolation . 7

5.2.1 Code partitioning: Core firmware and Secure containers (aka ”boxes”) 8

5.2.2 Hypervisor initialization . 12

5.2.3 Context switches . 13

5.2.4 Summary of MPU protection effects . 16

5.3 Chain-of-Trust, firmware integrity and authenticity . 16

5.3.1 Secure Boot firmware and verification key are in immutable memories with integrity check 16

5.3.2 No code loading/injection is possible except through a secure loader 17

5.4 Summary of software items, keys and their protection . 18

5.5 Additional considerations . 19

5.5.1 Absence of backdoors . 19

5.5.2 Execution from internal memories . 19

5.5.3 Protection of external memories . 19

5.5.4 Early execution the Secure Boot ROM and of the isolation mechanism 20

5.6 Hardware enforced security . 20

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — i

Deeptrust for Cortex-M

5.6.1 Cortex-M mechanisms: MPU, privileges, NVIC . 20

5.6.2 NVSRAM - Battery backed non volatile RAM . 21

5.6.3 Sensors . 21

5.6.4 Read-Only Memory, One-Time programmable memory 22

5.7 Secure API . 22

5.8 Development process . 22

5.8.1 Source code control . 22

5.8.2 Bug tracking . 23

5.8.3 Code review . 23

5.8.4 Source code control . 23

5.8.5 Developer's guidelines . 23

5.8.6 Firmware versioning and management . 24

5.9 Conclusion . 24

5.9.1 Architecture diagram, PCI firmware perimeter . 24

6 Design Description 26

6.1 Software API Specification . 26

6.2 Application box(es) . 27

6.3 Operating system, drivers, C library, other libraries... 28

6.4 Security Monitor . 29

6.5 Secure Sandbox services (Generic Security functions) . 30

6.5.1 Detailed Description . 30

6.5.2 Cryptography . 32

6.5.3 Global management functions . 33

6.5.3.1 Detailed Description . 33

6.5.3.2 Function Documentation . 33

6.5.4 I/O API . 35

6.5.4.1 Detailed Description . 35

6.5.4.2 Function Documentation . 35

6.5.5 Key Manager . 37

6.5.6 Memory Manager . 38

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — ii

Deeptrust for Cortex-M

6.5.6.1 Detailed Description . 38

6.5.6.2 Function Documentation . 38

6.6 PCI Security Services, Security functions dedicated to PCI PTS POI security 40

6.6.1 Detailed Description . 40

6.6.2 EMV-Level 1 Smart Card . 41

6.6.2.1 Detailed Description . 41

6.6.2.2 Function Documentation . 41

6.6.3 PIN handling . 43

6.6.3.1 Detailed Description . 43

6.6.3.2 Function Documentation . 43

6.6.4 Magnetic Stripe . 46

6.7 uVisor API . 47

6.7.1 Detailed Description . 48

6.7.2 Data Structure Documentation . 48

6.7.2.1 struct UvisorBoxAclItem . 48

6.7.3 Macro Definition Documentation . 49

6.7.3.1 UVISOR BOX CONFIG . 49

6.7.3.2 UVISOR BOX NAMESPACE . 49

6.7.3.3 UVISOR SET MODE . 50

6.7.3.4 UVISOR SET MODE ACL . 51

6.7.4 Typedef Documentation . 51

6.7.4.1 UvisorBoxAcl . 51

6.7.5 Function Documentation . 51

6.7.5.1 check acl() . 51

6.7.5.2 rpc fncall waitfor() . 52

6.7.5.3 uvisor box id self() . 52

6.7.5.4 uvisor box namespace() . 53

6.7.5.5 uvisor box signingkey() . 53

6.7.5.6 vIRQ ClearPendingIRQ() . 54

6.7.5.7 vIRQ DisableIRQ() . 54

6.7.5.8 vIRQ EnableIRQ() . 54

6.7.5.9 vIRQ GetLevel() . 54

6.7.5.10 vIRQ GetPendingIRQ() . 54

6.7.5.11 vIRQ GetPriority() . 55

6.7.5.12 vIRQ GetVector() . 55

6.7.5.13 vIRQ SetPendingIRQ() . 55

6.7.5.14 vIRQ SetPriority() . 56

6.7.5.15 vIRQ SetVector() . 56

7 PCI PTS POI 5.0 Guidance (DRAFT, to be modified) 57

8 References 58

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — iii

Deeptrust for Cortex-M

1. Document details

1.1 Release Notes

Revision Date Description
A 04/12/2016 Initial Release
B 03/01/2017 Add Debug Box

Refine interrupt handling discussion
Introduce event management
Refine key management

C 02/02/2017 Clarifications in the security architecture description
D 19/05/2017 Reflect latest modifications
E 19/06/2017 Improvements, see note 1 below

Note 1: Revision E improvements vs v1.1 UL release

mbed-OS improvements:

• Addition of MAX32552 support & rework of file layout in target/ folder

• Non security related bug fixes in Maxim drivers and performance improvements.

• Rework of the linker file to adapt to separate box signature mechanism

• Some adjustments in the Maxim startup files

uVisor's improvements:

• Upgrade from 0.26.2-24 to 0.27

• Support for separate box signature (see related section in the main documentation)

• New API to get signing key of a box (hence it's privilege)

• Support for MAX32552

• Fix of Makefiles for correct multiple target support

• Improvement of debug messages in the debug version

• Add hook to implement ACL verification and enforcement at box loading time depending on signing key

• Add handling of NMI faults

Deeptrust API's improvements:

Globally:

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 1

Deeptrust for Cortex-M

• Support for separate box signature

• Reorganize folders

• Isolate crypto buffers

• Add key manager & crypto services

• Separation between core firmware, firmware level boxes, trusted boxes, and other boxes

PCI services:

• Addition of a watchdog to automatically clear the PIN if not used

• Forcibly flush the PIN after use

• Keep crypto working buffer private (used to be visible from several boxes)

• Erase buffers containing sensitive data after use: data hash.data val, issuer public key

• Other minor bug fixes

Secure Sandbox services:

• Add a trace capability to catch security issues, and capability to add user handling for such events

• Add secure RTC control

• Add automatic reset every 24h

• Evolutions in keypad handling and display following MAX32552 support addition

• Buffers containing keypad/touchscreen entries are now correctly kept as private

• Support of power management

Author

Maxim Integrated

Date

2016-2017

Reference

SPEC98T17

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 2

Deeptrust for Cortex-M

2. Copyright Notice

/***
* Copyright (C) 2016-2017 Maxim Integrated Products, Inc., All rights Reserved.
* This software is protected by copyright laws of the United States and
* of foreign countries. This material may also be protected by patent laws
* and technology transfer regulations of the United States and of foreign
* countries. This software is furnished under a license agreement and/or a
* nondisclosure agreement and may only be used or reproduced in accordance
* with the terms of those agreements. Dissemination of this information to
* any party or parties not specified in the license agreement and/or
* nondisclosure agreement is expressly prohibited.
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
**/

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 3

Deeptrust for Cortex-M

3. Trademarks

• ARM is a registered trademark and registered service mark and Cortex is a registered trademark of ARM
Limited.

• mbed is a registered trademark of ARM Limited.

• All trademarks not mentioned here that appear on this web site are the property of their respective owners.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 4

Deeptrust for Cortex-M

4. Introduction

This document describes the Deeptrust architecture and API.

Deeptrust is a security architecture designed by Maxim Integrated. This architecture allows software isolation
and privilege limitation of software running on a System-on-Chip (SoC) (aka microcontroller) with an ARM®
Cortex®-M3/4 core. This security design prevents applications hosted on the same platform from accessing sensi-
tive data, peripherals, executable code.

Deeptrust has been designed to pass the Payment Card Industries – Pin Transaction Security 5.0 certification. This
architecture aims to be approved as conforming to those requirements, so the customer will only need to build a
conforming terminal (which must be evaluated) and have their changes to Deeptrust approved. The coverage of
the requirements is exposed in the section PCI PTS POI 5.0 Guidance.

Software running in the platform is split into secure containers in order to:

• reduce the scope of the software validation

• reduce the scope of the PCI evaluation, and exclude non related code that can be modified more easily
without undergoing a new evaluation

• improve the overall robustness of the running software by preventing the propagation of a bug or vulnerabil-
ity

The Deeptrust offering contains the following:

• A Secure Boot ROM, embedded in MAX325xx ICs from Maxim Integrated

• Software sources and/or binary libraries that implement the security architecture mentioned above:

– The lightweight hypervisor, derived from ARM uVisor (see https://www.mbed.com/en/technologies/security/uvisor/)

– ARM mbed® TLS (https://tls.mbed.org) leveraging the secure cryptographic algorithms

• Maxim software libraries sources and/or binaries that provide base services for customers to implement
EMV-Level 2 and payment applications:

– Secure Smart Card communication, display, user entry

– Secure PIN handling (offline verification, DUKPT for online verification)

– Mag Stripe reading

– Secure cryptographic algorithms and key management

– Secure memory allocation

– Platform integrity management, error and security event handling

– Secure firmware update

• General purpose software:

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 5

https://www.mbed.com/en/technologies/security/uvisor/
https://tls.mbed.org

Deeptrust for Cortex-M

– ARM mbed OS (using the mbed command line version, see https://docs.mbed.com/docs/mbed-os-handbook/en/5.←↩
2/getting started/blinky cli/)

– Maxim MAX325xx HAL (drivers)

• Maxim PC Tools for Secure Boot ROM management:

– generation of signed firmware images

– secure update protocol

• Documentation:

– The present user guide, including a description of the coverage of the PCI PTS POI 5.0 requirements

– Secure Boot ROM documentation

– PCI PTS Security Evaluation report to be reused for the final certification

• Demonstration and example code

• Technical support

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 6

https://docs.mbed.com/docs/mbed-os-handbook/en/5.2/getting_started/blinky_cli/
https://docs.mbed.com/docs/mbed-os-handbook/en/5.2/getting_started/blinky_cli/

Deeptrust for Cortex-M

5. Security Architecture Presentation

Deeptrust relies on the following elements of architecture:

• Hypervisor-based software isolation

• Chain-of-Trust, firmware integrity and authenticity

• Hardware enforced security

• Secure API

Note to the reader: the security mechanism presented here is composed of elements closely tight together and
heavily depending on each other. Therefore it is advised to read this twice.

5.1 Primer on Cortex-M security mechanisms

Let's introduce some essential concepts now for the sake of understanding this document. These concepts will be
further explained later though.

The architecture of Cortex-M3/4 cores provides the following security mechanisms:

• Two-level execution privilege: ”Thread user” and ”Handler privileged”. The core always boots in Handler
privileged mode. Switching to Thread user mode is done via a dedicated instruction. Switching back to
Handler privileged mode is achieved through Interrupts and exceptions (including the SVC software excep-
tion). Both modes can have separate stacks. Thread user also has limited access to core registers (MPU
configuration, stack pointers, NVIC interrupt controller configuration, etc)

• Memory protection unit (MPU): this component is optional regarding the Cortex-M core instantiation, but
mandatory for the security architecture presented here. The Maxim Integrated's MAX325xx SoCs do have an
MPU implemented. The MPU allows to define access rules to any memory range (Flash, RAM, peripherals)
for code running in Thread user mode. The MPU can be configured only from the Handler privileged mode
of operation of the Cortex-M core.

5.2 Hypervisor-based software isolation

Software isolation is achieved by a lightweight security hypervisor (also simply called hypervisor below) that
leverages the Cortex-M security mechanisms.

The lightweight security hypervisor in use is ARM® mbed uVisor (see [DOC1]). Software isolation means that the
various software components run inside secure containers (aka ”boxes”) isolated from each other, and also from
the hypervisor itself.

In this security architecture, the hypervisor is the only code running in Handler privileged mode of execution, and
hence is fully and exclusively controlling the MPU.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 7

Deeptrust for Cortex-M

5.2.1 Code partitioning: Core firmware and Secure containers (aka ”boxes”)

In this architecture, we distinguish the Core firmware from the Secure boxes.

• Core firmware: the core firmware contains the trusted executable code and is signed using the firmware
signing key of the secure boot ROM (see), i.e.:

– SoC Startup code

– Hypervisor

– mbed-OS (high level API, RTOS) and Maxim driver libraries

– Other Maxim software libraries, C runtime library

– Related constant data and variable initialization values

– Store of Secure boxes verification keys

The core firmware integrity and authenticity is verified and executed by the secure boot ROM (see Hypervi-
sor initialization). This component is part of the PCI firmware perimeter.

• Secure boxes: Boxes contain application-level code. As seen above, secure boxes can be invoked by other
boxes through the RPC mechanism. No direct call is allowed.

– PCI Secure Services and Secure Sandbox Services boxes

– Payment application box

– Other secure boxes

Secure boxes are software containers enforced by the hypervisor. Thanks to the hypervisor, each box has:

• its own private stack

• its own private RAM

• its own private flash data section

• access to the smallest subset of peripherals possible as defined by access control lists (ACLs). ACLs are
used to deny/grant physical access to peripherals.

• an ID and a namespace that can be trusted. Those IDs are used for granting or denying access during RPC
calls (described later).

• no access to forbidden peripherals, memory ranges, exception vectors, NVIC configuration, MPU configu-
ration

This way, even if all are running with unprivileged permissions, different boxes can protect their own secrets and
execute critical code securely.

Note that the hypervisor allows the existence of a ”Public box”. In this design, the public box is part of the ”Core
firmware” and is actually not executing code. It is not at the same level as Secure Boxes described below.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 8

Deeptrust for Cortex-M

Figure - Platform memory layout

There are three levels of secure box privilege levels:

• ”Box firmware”: the secure box is part of the PCI firmware perimeter; it has full access to peripherals and
memory(∗)

• ”Box trusted”: the secure box is trusted, which grants some direct access to peripherals and memory

• ”Box trusted”: the secure box is not trusted, which grants no direct access to hardware and limited visibility
of memory

(∗) the hypervisor still has protected memory that is not visible from Thread/user mode, hence from no box what-
ever the box privileges are.

The box privilege is granted at box loading time based on the signing key of the box. If the signing key was K fw
and the signature verification of the box is successful, the the ”Box firmware” privilege is granted.

This box privilege level defines two kinds of privileges:

• The allowed ACLs

• The allowed services

The box privilege policy can be customized:

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 9

Deeptrust for Cortex-M

• from the core firmware, it is possible to define what ACLs are acceptable for each box privilege level. The
ACLs of secure boxes cannot be arbitrary and must correspond to what is really allowed by the core firmware.
Therefore the hypervisor is in charge of controling the validity of the ACLs to make sure that memory regions
that need to be always protected are not claimed by the secure box.This specification defines a sample ACL
policy, but it can be adapted. This policy is implemented in the core firmware, thus cannot be tampered
with by additional software. The ACL policy is enforced at boot time when secure boxes are laoded by the
hypervisor. It cannot be modified at runtime, as for the ACLs themselves.

• from boxes that offer services through RPC. The hypervisor offers a service to be used by RPC servers that
allows to get the privilege level of the caller box in order to implement an access policy based on the caller's
privilege. For instance, access to the ”PIN entry” service can be declined to non trusted boxes. In addition,
the box name can be used to further refine the policy (e.g. service is allowed to trusted boxes which name
is box aaaaa and box bbbbb, but declined in all other cases). The box name can also be asked by the RPC
server, similarly to the privilege level of the caller.

5.2.1.0.1 Box access control list

For secure boxes, unprivileged access to selected hardware peripherals and memories must be explicitly granted
through Access Control Lists (ACLs). ACLs are managed by the hypervisor. ACLs are defined at boot time and
cannot be modified at runtime. When running out of a secure box, access to memories and peripherals is the most
restrictive: access that are not explicitly granted are denied by default.

Software running in a box can access only the memory ranges it has been allowed to (through the Access Control
Lists, ACLs), with the access type enforced (RWX, RO, etc...) for each range. The definition of the privileges of a
box is done at compilation and remains static, i.e. cannot be modified at runtime.

In addition, the secure box binary code, constant data and variable initialiation values and its ACL are signed as
a whole (single binary image) using a private signing key. As the whole image signature is verified upon boot,
the box privileges and ACLs are protected against modification. The application's box privileges are read by the
hypervisor during the early initialization of the SoC (see Hypervisor initialization) and stored into the hypervisor
protected memory so they cannot be modified from the application's box.

5.2.1.0.2 Box isolation enforcement

Let's explain how the hypervisor implements the isolation of secure boxes. The hypervisor is the only software
running in Handler privileged mode. All other software runs in Thread User mode (see Cortex-M mechanisms:
MPU, privileges, NVIC), even the core firmware's unprivileged code.

The hypervisor is therefore the only software component allowed to control the MPU (initial configuration, re-
configuration during context switches, secure interrupt handling) and catch the exceptions and interrupts. This is
verified as:

• the hypervisor executable image is verified by the Secure Boot ROM (see Secure Boot firmware and verifi-
cation key are in immutable memories with integrity check), hence it cannot be modified arbitrarily.

• the hypervisor is initialized early in the boot process (see Hypervisor initialization), before any other Secure
Box can run. During its initialization, the hypervisor:

– registers the exception vectors, and prevents access to the vector table and to the vector table location

– sets the core in Thread User mode of execution before relinquishing the CPU to the applications.

The only way to jump back to Handler privileged mode is through exceptions (interrupts and exception, SVC
instruction). As exception vectors belong to the hypervisor, the hypervisor keeps the monopoly of execution in
Handler Privileged mode.

The hypervisor relies on the two hardware mechanisms described hereafter (see Cortex-M mechanisms: MPU,
privileges, NVIC).

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 10

Deeptrust for Cortex-M

5.2.1.0.3 Instantiation of secure boxes and code signing

Secure boxes cannot be instantiated at runtime. Instantiation is done at compilation time, as the definition of the
ACLs, using the hypervisor API. Once compiled, the binary resulting of the build process contains the application
executable image, containing the ACLs. This image must be signed so it can be part of the 2nd level application.

The file sources/deeptrust api/box example/example.cpp illustrates this instantiation.

In the first version os this specification, the compilation of the whole embedded software must be done in a single
operation. In the resulting binary image, the core firmware binary is separated and signed separately using the
ROM secure boot signing key. Other secure boxes code is also separated from each other and signed with different
signing keys. However the software binary image remains monolithic and must be loaded entirely in a single
operation. Secure boxes are stored in a contiguous memory area.

In the next release, it will be possible to compile secure boxes separately, and load them separately from each other.

Secure boxes have the following structure in memory:

• Header with:

– 4-byte magic
– Box name (must be unique, update fails if box name already exists)
– Box image length
– Box verification key ID
– Box ACLs, RPC list
– Signature of the above field and the ”Secure box executable image” below, using the verification key

”ID” as mentioned in the header.

• Secure box executable image

– Executable code (.text section)
– Constants and initialization data (.rodata and .data sections)

Note: The box name must be unique. Note: The above is signed using a dedicated key that is different from the
CRK core firmware signing key. This scheme allows to consider secure boxes as separate from the core firmware.

The verification key ID defines the box privileges. If one posseses the K fw signing key, he can write code having
the ”box firmware” privilege. The K trusted shall be distributed

Even if no unsigned code can be executed (this leads to a platform reset), any code must be carefully reviewed
before being signed and loaded into the platform.

Let's precise that the code signing key management is left at the discretion of users of Deeptrust. The foreseen
usage is:

• The terminal vendor owns the CRK and the K fw keys that allow writing code within the ”PCI perimeter”

• The terminal vendor or a contractor owns the K trusted key taht allows writing ”Banking applications”
allowed to somehow interact with smart cards and magnetic stripe (through usage of the PCI secure services)

• Other parties may own the K other key to be able to provide low privilege applications (advertisement,
loyalty...). The K other key is designed to give the least privilege in the platform.

This scheme can be further extended with more keys, and customized by reworking the uvisor check acl func-
tion. Ultimately the vendor is in charge of managing the code verification keys present in the platform, an how to
distribute/update them.

The Makefile present at the root of the project is in charge of signing secure boxes according to this 3-level privilege
design.

Notes:

• There's no 1 to 1 mapping between boxes and threads: a box can run several threads, all running with the
parent box privileges.

• The program entry point ”main()” runs outside of a secure box (All the code running in Thread User mode,
that is not protected in a secure box, is referred to as the public box). this public box is part of the ”core
firmware” and cannot be customized unless one posseses the ROM secure boot signing key.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 11

Deeptrust for Cortex-M

5.2.2 Hypervisor initialization

During the boot of the SoC, the Secure Boot ROM starts running in ”Handler/Privileged” mode (the Cortex-M
boots in that mode). It verifies the digital signature of the ”2nd level application” stored in flash memory, and, if
successful, jumps into the entry point (aka startup) of the latter, also in ”Handler/Privileged” mode.

The the ”2nd level application” is a term used in the Secure Boot ROM documentation. It designates the binary
executable image that sits in a flash memory and that is verified by the Secure Boot ROM. In our design, the ”2nd
level application” is the ”core firmware” described above.

The ”core firmware” execution begins by the initialization of the hypervisor itself, which also runs in Handler/←↩
Privileged mode. During this initialization phase, the hypervisor sets up a protected environment using the M←↩
PU: the MPU is configured so that the hypervisor keeps ownership of its own memories and the security-critical
peripherals, in order to keep them protected from the unprivileged code. The hypervisor secures two main memory
blocks, in flash and SRAM respectively (it places its own constants, data and stack in secured areas of memory,
separated from the unprivileged code). In both cases, it protects its own data and the data of the secure boxes it
manages from the unprivileged code.

This initialization step makes some peripherals impossible to access to the unprivileged code whatever the AC←↩
Ls are. Therefore accessing to some security-critical peripherals (like DMA) requires SVCall-based APIs for the
unprivileged code. The MPU configuration, the vector table, the NVIC configuration are also made inaccessible
from the unprivileged code.

The hypervisor initialization is as follows:

1. Several sanity checks are performed, to verify integrity of the memory structure as expected by the hypervi-
sor.

2. The hypervisor ”.bss” section is zeroized, the data section initialized.

3. The Memory Protection Unit (MPU) is configured

• The hypervisor takes ownership of the vector table

• The hypervisor protects some RAM and some flash so they are reserved to Handler privileged mode

4. Secure boxes are loaded:

• Secure boxes digital signatures are verified one by one using the appropriate verification key

• It is verified that names of secure boxes are unique

• Each box's .bss section is zeroed

• Each box's .data section is initialized

• Access Control Lists (ACLs) are registered and checked against validity. Additional boxes cannot be
granted arbitrary access to any memory region (the ACL policy described earlier is enforced)

• Stacks are initialized, a private box context is initialized, if required by the box.

5. Handler privileged and Thread user modes stack pointers are initialized.

6. Execution switched to Thread user mode and handed over to the unprivileged code.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 12

Deeptrust for Cortex-M

Figure - Boot sequence

5.2.3 Context switches

The hypervisor prevents CPU registers leakage when switching execution between Handler privileged and Thread
user code and between mutually untrusted unprivileged boxes. It also remaps the stack and modifies the MPU
according to the destination context.

During a context switch, the hypervisor stores the state of the previous context and then:

• It re-configures the stack pointer and the box context pointer.

• It re-configures the MPU and the peripherals protection.

• It hands the execution to the target context.

• A context switch is triggered automatically every time the target of a function call or exception handling
routine (interrupts) belongs to a different secure box. This applies to user interrupt service routines, threads
and direct function calls.

Memory map varies according to context. The diagram below shows the modification of the memory map when
switching from a Box A to a box B

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 13

Deeptrust for Cortex-M

5.2.3.0.1 Initial jump to Thread user mode

All the code that is not explicitly part of the hypervisor is generally referred to as unprivileged code. The un-
privileged code is the code that runs in Thread/User mode, and that is therefore unable to modify neither the
configuration of the MPU (privileged access required) nor its own access privileges.

The ”main()” function of the 2nd level application, called from the startup file, after the initialization of the hyper-
visor and the C/C++ runtime, is such unprivileged code. Indeed, after initialization, the hypervisor starts executing
the ”main()” after having switched into the Thread/User mode of execution.

Unprivileged code runs with the following capabilities:

• runs in Thread/User mode

• has direct memory access to unrestricted unprivileged peripherals (as defined by the Cortex-M)

• can require exclusive access to memories and peripherals

• can register for unprivileged interrupts

• cannot access privileged memories and peripherals (doing so makes the MPU trigger a CPU fault)

5.2.3.0.2 Interrupts and exceptions

Exceptions/interrupts make the Cortex-M switch to Handler privileged mode. Therefore the hypervisor must catch
the exception, switch to Thread/User mode and call the registered unprivileged handler.

To this end, interrupt vectors are relocated to the SRAM but protected by the hypervisor. Access to them is made
through specific APIs: the unprivileged code can register for unprivileged interrupts. Therefore the hypervisor
needs to catch, forward and de-privilege interrupts to the unprivileged handler that has been registered for them.

A context switch is triggered automatically every time an exception handling routine (interrupts) belongs to a
different secure box.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 14

Deeptrust for Cortex-M

5.2.3.0.3 Cortex-M Privilege escalation

Interaction from the Thread user code to the Handler privileged code is achieved by exposing SVCall-based APIs.
As exception vectors are handled exclusively by the hypervisor, SVC exceptions are caught by this one exclusively,
as all the other forms of exceptions (and interrupts).

5.2.3.0.4 RPC mechanism

The hypervisor allows inter-box communication through RPCs (Remote Procedure Calls). The callee box can
check the origin of the call using the box ID of the caller (and hence it's unique name), and also the box privilege
of the caller, in order to determine whether the requested action is legitimate or not. RPC calls trigger context
switches.

Definitions:

• Context A: all applications (boxes) Their ACLs prevent direct access (hardware registers) to sensitive pe-
ripherals

• Context B: PCI box, Secure services box Their ACLs allow direct access to sensitive peripherals

Security context switch (from Box A context to box B context) is done via RPC calls

1. SVC instruction triggers exception caught by the hypervisor

2. RPC is managed by the hypervisor

(a) Box A calls RPC (ARM SVC instruction)

(b) Exception triggered by SVC: enters into Handler privileged mode and enters the hypervisor’s “software
exception” handler

(c) the hypervisor: Gets caller box (A) ID, target box (B) ID

(d) the hypervisor reconfigures the MPU with context B ACLs

(e) the hypervisor: exits Handler privileged mode, dispatches call to target box

(f) Box B: executes called function

On return, inverse process is applied.

Context switches can also be triggered by interrupts also handled by the hypervisor, the same way. An interrupt
makes the Cortex-M enter the Handler privileged mode. However exception vectors are protected by the hypervisor
hence the hypervisor catches the interrupt. The execution mode of the Cortex-M is set back to unprivileged by the
hypervisor and it then calls the registered interrupt handler.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 15

Deeptrust for Cortex-M

5.2.4 Summary of MPU protection effects

5.3 Chain-of-Trust, firmware integrity and authenticity

5.3.1 Secure Boot firmware and verification key are in immutable memories with integrity
check

The secure Boot ROM is a trusted immutable code in read-only memory that allows booting the SoC. The use
of a Read-Only Memory guarantees de-facto the integrity and authenticity of the Secure Boot firmware itself, as
modification of the ROM on an IC die is assumed too costly and highly technical. Integrity of the ROM is verified
by a CRC verification before boot: the hardware initialization state machine verifies the CRC before releasing the
CPU upon each reset. The CPU will start executing the code only if the ROM CRC is correct.

The Secure Boot ROM guarantees that the firmware that gets executed next is genuine and not modified (authen-
ticity and integrity verification). This is mandated for building trust in the system. The Secure Boot ROM is the
Root of Trust.

The secure Boot ROM is designed to launch a 2nd level application from the internal flash memory of the SoC. It
requires that the 2nd level application’s digital signature is correct and has been performed with the correct CR←↩
K sign signing key, otherwise it refuses to start it. This digital signature is verified using a public key (Customer
Root Key, CRK verif) stored in a write once memory (OTP, one-time programmable memory) of the SoC.

The CRK verif integrity is also verified before use. Indeed the MAX325xx contains a public key in ROM (the
MRK, Maxim Root Key), owned by Maxim Integrated. The MRK allows verifying the signature of the customer

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 16

Deeptrust for Cortex-M

public key (CRK verif) before it is used. Therefore, customers must submit their public key CRK verif to Maxim
beforehand. Maxim signs this public key with the MRK private counterpart, and returns this signed CRK verif
to the customer. The customer then has to download this signed CRK verif through the above-mentioned SCP
protocol (SCP packets are pre-generated offline in a secure environment using a private key see [DOC11])

As the secure boot ROM firmware and the CRK verif and MRK verification keys cannot be replaced, the integrity
and authenticity of the booted 2nd level application is guaranteed.

Figure - Chain of trust

5.3.2 No code loading/injection is possible except through a secure loader

The below items guarantee that only trusted code can be loaded into the platform.

5.3.2.0.1 Signature verification of downloaded code

The default ACL policy does not grant write access to the internal flash to store executable code and therefore
does not allow code updates. However the Secure Boot ROM is capable of updating applications through a serial
protocol called SCP. It can securely download new applications into the platform’s non-volatile memory through a
serial port or a USB port.

Note: The SCP protocol also allows configuration, life-cycle management and key management. See [DOC11]

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 17

Deeptrust for Cortex-M

5.3.2.0.2 Loading and Update of additional secure boxes

In the second version of this specification, a partial update service will be offered, where secure boxes can be
independently loaded and/or updated. Those secure boxes must be signed, and the verification will be performed
during the uploading (in addition to theit boot time verification already described). An alternate loading service
will be provided too, in order to second the SCP offered by the ROM.

To allow partial build, the core firmware will publish the location of symbols so that additional boxes can refer
to those symbols (e.g peripheral drivers entry points, C library functions). In order to be able to update the core
firmware without breaking the compatibility of the additional boxes already present in the platform's flash memory,
those adresses must be kept the same. Some indirect calls can be used to make the preservation of constant adresses
easier. Note that an update of the core firmware will most of the time require a recompilation and an update of all
secure boxes. Otherwise, secure boxes will possibly be modified, built and loaded separately without any impact
on the rest of the software.

Secure boxes will have to be built using position independent code so that they can be stored at random locations.
The volatile memory needed by the them will also have to be dynamically allocated, because the precense of other
secure boxes using potentially the same otherwise static volatile memory adresses may conflict.

Interfacing secure boxes

Secure boxes cannot contain general purpose code accessible through direct call. As a matter of fact, existing
secure boxes are usually not aware of newly added boxes and therefore cannot really use them. The boxes can
however publish services in a jump table. Those services are RPC functions. Additional boxes can use services by
other boxes already present in the platform's flash memory. They can refer to these services knowing the targeted
box's name and service ID.

5.4 Summary of software items, keys and their protection

Software
item

PCI
Perime-
ter?

Execution
privilege

Signing
key

Verification
key

Location
of veri-
fication
key

Verification
of verifi-
cation key
by:

Verification
of soft-
ware item
by:

ROM
secure
boot

Yes Handler
privileged

None n/a n/a Hardware
state ma-
chine
performs
CRC-32 of
ROM

Core
firmware -
privileged
(hypervi-
sor)

Yes Handler
privileged

CRK sign CRK verif OTP mem-
ory

ROM
secure
boot, using
a hard-
coded
MRK
public key
in ROM

ROM
secure
boot

Secure
box - ”box
firmware”
privilege

Yes Thread
user

K fw K fw verif In core
firmware
binary
image

ROM se-
cure boot,
together
with the
Core
firmware
image

Core
firmware's
hypervisor

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 18

Deeptrust for Cortex-M

Software
item

PCI
Perime-
ter?

Execution
privilege

Signing
key

Verification
key

Location
of veri-
fication
key

Verification
of verifi-
cation key
by:

Verification
of soft-
ware item
by:

Secure
box - ”box
trusted”
privilege

No Thread
user

K trusted K ←↩

trusted ←↩
verif

In core
firmware
binary
image

ROM se-
cure boot,
together
with the
Core
firmware
image

Core
firmware's
hypervisor

Secure
box - ”box
other”
privilege

No Thread
user

K other K otehr ←↩
verif

In core
firmware
binary
image

ROM se-
cure boot,
together
with the
Core
firmware
image

Core
firmware's
hypervisor

5.5 Additional considerations

The following paragraphs give additional justifications to the consistence of the above, security-wise

5.5.1 Absence of backdoors

All MAX325xx SoCs released in the field have no JTAG interface enabled. Therefore it is not possible to bypass
or perturbate the executed firmware (in particular the secure boot ROM), or to inject arbitrary code for execution
by the platform through a debug interface.

No test mode can be activated after manufacturing operations at Maxim Integrated therefore no possibility to
bypass security is provided.

No intentional backdoors for re-enabling the JTAG or any test mode are existing.

The Secure Boot ROM is always executed after reset. It cannot be skipped.

5.5.2 Execution from internal memories

The platform software can be executed from internal flash and optionally internal RAM, and the runtime data are
stored in internal RAM. Long term data may be stored in internal flash. Access to the SoC internal memories is a
costly attack defeated by the presence of a die shield and is assumed impossible in the present context.

5.5.3 Protection of external memories

The platform software executed from external flash and the related data are protected by the on-the-fly integrity
and encryption, and the external flash is protected from physical tampering/replacement throught the SoC intru-
sion sensors that prevent intrusions in the enclosure. Therefore the external flash memory is protected against
manipulation.

Therefore, the only mean to load executable code into the platform is through the Secure Update provided by the
Secure Boot ROM.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 19

Deeptrust for Cortex-M

5.5.4 Early execution the Secure Boot ROM and of the isolation mechanism

The SoC always boots the Secure Boot ROM in any circumstances and starts the 2nd level application (if valid, as
discussed above).

The 2nd level application begins by the early initialization of the SoC, the initialization of the security sensors of
the SoC and then the initialization of the the lightweight security hypervisor.

The hypervisor is initialized right after device start-up and takes ownership of its most critical assets, like privileged
peripherals, the vector table and memory management.

From this moment on, the operating system/application runs in Thread user mode and in the default context, which
is the one of the main box.

The next step consists in the creation of the various boxes, the registration of their ACLs and the beginning of
the execution of the OS Scheduler that will execute the various threads (a box may contain one or more threads).
The overall code is covered by the Secure Boot ROM integrity and authenticity verification and can therefore be
trusted.

Additional firmware independent components can be verified and launched by the initial trusted firmware already
verified above.

5.6 Hardware enforced security

The following hardware features are leveraged by the software described above.

5.6.1 Cortex-M mechanisms: MPU, privileges, NVIC

The Cortex-M3/4's Memory Protection Unit and the Execution mode/Privilege level (Thread/Handler modes of
execution, Privileged/User Access) are used to support the software isolation.

5.6.1.0.1 1. The Cortex-M's Memory Protection Unit (MPU)

The Cortex-M MPU is used to grant/deny access to regions of the memory map to the unprivileged code (i.e. all
the code except the hypervisor)

The MPU could also restrict access even to the privileged code (without the possibility for the privileged code to
modify the access) but this feature is not used currently, in the security architecture presented here.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 20

Deeptrust for Cortex-M

5.6.1.0.2 2. The Cortex-M's 2-level execution model

The Cortex-M's 2-level execution mode (Handler, Thread) combined with the 2-level privilege system (Privileged,
User) prevents code running in Thread/User mode from breaking the MPU configuration that requires Privileged
access. This hardware feature is leveraged by the lightweight security hypervisor. Return to the Privileged/←↩
Thread mode can be done only via a SVCall-based API (see http://infocenter.arm.com/help/index.←↩

jsp?topic=/com.arm.doc.dai0179b/ar01s02s07.html), i.e. a software triggered exception that can be
cached only by the Privileged Handler actually implemented by the Lightweight security hypervisor and that
cannot be modified by/re-routed to unprivileged code.

5.6.1.0.3 3. The Cortex-M's NVIC

The interrupt controller is exclusively controlled by the hypervisor, hence no other unprivileged code can register
exception handlers. This is vital since the Cortex-M executes exception handlers in Privileged/Handler mode.

5.6.2 NVSRAM - Battery backed non volatile RAM

Sensitive data can be stored in the MAX325xx’s battery backed RAM which gets immediately erased in case of
tampering detection (physical tampering, environmental perturbations). The NVSRAM is leveraged by the Key
Manager to store long-term secret/private keys that get erased whenever the device is under attack.

5.6.3 Sensors

Environment perturbations (temperature, glitches, die shield, external dynamic sensors,...) lead to the generation
of a non maskable interrupt that stops the execution of the platform's software and thus prevents running away
into a non secure mode. Sensors are activated before the security hypervisor initialization in order to guarantee the
physical integrity of the platform before running further code.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 21

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0179b/ar01s02s07.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0179b/ar01s02s07.html

Deeptrust for Cortex-M

5.6.4 Read-Only Memory, One-Time programmable memory

The Secure Boot ROM is non modifiable and thus inherently trusted, and its configuration or the code verification
keys are in a write-once memory (OTP) and cannot be changed. The ROM and the OTP memory areas integrity is
verified (Checksum) before use.

Note: hardware security mechanisms are evaluated in a separate report. See report [DOC12].

5.7 Secure API

Access to PCI PTS POI sensitive services via API with security policy.

The services offered by the Maxim software library are contained in 3 boxes and can be invoked via RPC calls as
described above.

The API entry points are implemented following this behaviour:

• get the ID of the calling context

• get box privilege of the calling context

• grant/deny access to the service depending on the caller's ID, the box privilege, and the context

3 boxes are offered:

• PCI Security Services boxes (In certification scope)

• Secure Sandbox Services (In certification scope)

• Security Monitor Services (In certification scope)

Additional services such as OPEN protocols would also fit into the Secure Sandbox Services.

The API can be found further in this document, see Reference Guide

5.8 Development process

5.8.1 Source code control

The source code of the whole Deeptrust software offer is stored on a secure server at Maxim Integrated. This
server features access control:

• only well-known project stakeholders can read the source code

• only software developers and push additional code to the source code repository

• only the software integrator can merge-in new code from software developers

• only the software integrator can publish new releases after review

The list of stakeholders is controlled by the project manager and can be also modified by some IT administrators.
All are personel with a high level of confidence. Roles are:

• simple stakeholder: read-only access

• developer: read access, write access to separate branches, cannot merge code into main trunk

• validator: read access

• integrator: read/write access + publication rights

• project manager: read/write access + stakeholder list definition

The source control is implemented using GIT, more precisely a self-hosted Gitlab server. The server is located on
Maxim's internal network with all the usual protections applied to corporate level servers that contain company
vital data.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 22

./modules.html

Deeptrust for Cortex-M

5.8.2 Bug tracking

Bugs are tracked using Gitlab's bug tracker. Bugs can be reported by any stakeholder. They can be closed by the
integrator or the project manager.

5.8.3 Code review

The following code review process is applied:

• The third party code and proprietary code are carefully reviewed by software security experts at Maxim, and
submitted to an external lab for audit.

• Issue fixes are reviewed before merging in the main trunk of the code

• The integrator and project manager are in charge of ensuring reviews are done.

5.8.4 Source code control

The public repositories containing the third party source code included in Deeptrust offer is checked weekly for
security bugs and vulnerabilities, in addition to a subscription to the bug trackers:

• https://github.com/ARMmbed/uvisor

• https://github.com/ARMmbed/mbed-os

• https://github.com/ARMmbed/mbed-cli

• https://gcc.gnu.org/bugzilla/buglist.cgi?chfield=%5BBug%20creation%5D&chfieldfrom=24h

Such issues are reported in Maxim's internal Bug tracking system for immediate analysis and correction if they are
found exploitable. In case of exploitable vulnerabilities, new software releases are published to customers as fast
as possible together with the notice describing the issue.

5.8.5 Developer's guidelines

In order to prevent the introduction of vulnerabilites, Maxim Software developers follow company rules for secure
coding. These rules can be provided upon request.

In addition, static analysis is performed on the source code to detect potential security issues (RATS, CPPCheck,
Visual Code Grepper are all used).

A thorough validation is also performed using the following strategy:

• development and review of a software test plan

• functional validation

• security validation: focus on detection of buffer and integer overflows, fuzzing of the APIs presented in this
document, logical security bugs

• other validation (performance, documentation accuracy)

• delivery of a software test report The whole code provided in the Deeptrust offer undergoes the above rules.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 23

https://github.com/ARMmbed/uvisor
https://github.com/ARMmbed/mbed-os
https://github.com/ARMmbed/mbed-cli
https://gcc.gnu.org/bugzilla/buglist.cgi?chfield=%5BBug%20creation%5D&chfieldfrom=24h

Deeptrust for Cortex-M

5.8.6 Firmware versioning and management

The firmware is versioned following this scheme: vX Y Z

• X: is the revision major, currently ”1” to match this specification. The mentionned version 2 of this specifi-
cation will lead to an incrementation of this number.

• Y: is the revision minor. It is incremented every time new functionalities or bug fixes are done, leading to
possible backward compatilibity issues may arise.

• Z: is the patch number. It is incremented every time a release is done. It usually corresponds to bug fixes or
minor functional additions without compatibility issues.

The firmware is developed internally at Maxim using the source control, bug tracking and development guidelines
described above. Reviews are performed and recorded on a regular basis, at least before each customer delivery.
Validation is performed and recorded, at least before each customer delivery.

Firmware deliveries are tagged and documented (description of the list of changes), together with the review and
validation records.

Firmware is released to customers using a public GIT server owned by Maxim, with strict read-only access and
access control: Only customers being granted access can read the source code. The hypervisor is released in
binary format only. The binary hypervisor is released in the mbed-os source tree, and included into the final
software during the mbed-os build step.

5.9 Conclusion

The above architecture provides a strong isolation of the sensitive data from regular applications. Sensitive data
are handled within Secure Boxes only. Other boxes cannot get access to the data manipulated by these boxes as
well as to some peripherals of the platform.

Isolation is enforced by the lightweight security hypervisor, which code and configuration data are protected by the
MPU and the execution mode/privilege level system of the Cortex-M core and verified by the ROM based secure
boot. the lightweight security hypervisor is executed early in the startup sequence before any user code, and no
debug/test/executable code loading exist in the platform.

Therefore the software isolation mechanism cannot be bypassed.

5.9.1 Architecture diagram, PCI firmware perimeter

The overall architecture relies on the following elements

• Application/other boxes (Out of PCI Certification)

• PCI Security Services boxes (In certification scope)

• Secure Sandbox Services (In certification scope)

• Security Monitor Services (In certification scope)

• Operating System (In certification scope)

• Lightweight Security Hypervisor (In certification scope)

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 24

Deeptrust for Cortex-M

• Secure BOOT ROM (In certification scope)

The architecture enforces the least privilege principle.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 25

Deeptrust for Cortex-M

6. Design Description

6.1 Software API Specification

Usage reference:

Application box(es) . 27
Operating system, drivers, C library, other libraries... 28
PCI Security Services, Security functions dedicated to PCI PTS POI security 40

EMV-Level 1 Smart Card . 41
Magnetic Stripe . 46
PIN handling . 43

Secure Sandbox services (Generic Security functions) . 30
Cryptography . 32
Global management functions . 33
I/O API . 35
Key Manager . 37
Memory Manager . 38

uVisor API . 47

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 26

Deeptrust for Cortex-M

6.2 Application box(es)

One or more boxes that run applications (e.g. VISA, EMV, Mastercard, Main application, etc) may exist and
leverage RPC API of other boxes (Boxes can communicate with each other through Remote Procedure Calls aka
RPC).

Their identification (box ID) will grant them access to their private data or specific privileges when using the API.

Those boxes run in independent threads.

PRIVILEGE LEVEL: ”Box Trusted” or ”Box Other”

They actually implement the high-level services proposed by the device (e.g. payment application). By using
the Secure Sandbox services box and the PCI Security Services box, the applications may be kept out of the
certification perimeter. Code can also run out of any box.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 27

Deeptrust for Cortex-M

6.3 Operating system, drivers, C library, other libraries...

The following software items are not running in a separate box:

• operating system

• libraries

• device drivers

They are rather seen as common code that can be executed within the context of multiple boxes. Success or failure
of the functions called depend on the context, i.e. the current ACLs, as enforced by uVisor.

This group of software items is considered as firmware.

PRIVILEGE LEVEL: Core Firmware

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 28

Deeptrust for Cortex-M

6.4 Security Monitor

This box is in charge of logging and handling security related events:

• non maskable interrupts due to security issues

• uvisor related exceptions (access faults)

It allows other boxes to:

• register event handlers to different events

• read the log

This box runs in an independent thread that:

• listens to RPC

• responds to RPC calls and checks the privileges of the caller

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 29

Deeptrust for Cortex-M

6.5 Secure Sandbox services (Generic Security functions)

Modules

• Cryptography
• Global management functions
• I/O API
• Key Manager
• Memory Manager

6.5.1 Detailed Description

The functions available here provide access to sensitive devices and services

• User I/O (touchscreen, keypad, display)

• Cryptography services

• Key manager

• Data storage through memory manager

• Global security management (including firmware update, system startup, response to attacks, integrity
checks)

• Register event handlers to different events, and read associated log

– non maskable interrupts due to security issues

– uvisor related exceptions (access faults, rpc errors)

• Periodic/one-shot alarm service

This box is the only box privileged to access some devices. Therefore it proposes various services to interact with
those peripherals.

Associated services are accessed through RPC.

This box runs in an independent thread that:

• listens to RPC

• responds to RPC calls and checks the privileges of the caller

PRIVILEGE LEVEL: Box Firmware

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 30

Deeptrust for Cortex-M

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 31

Deeptrust for Cortex-M

6.5.2 Cryptography

This module offers a generic purpose cryptographic API.

The cryptographic API offers the following services:

• public key based signature/verification using RSA and ECDSA

• symmetric encryption using 3DES and AES

• message digest

• MAC

• DUKPT

It works in coordination with the Key Manager.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 32

Deeptrust for Cortex-M

6.5.3 Global management functions

List of functions

• int ssbx rtc set alarm (unsigned int ∗alarm id, unsigned int period minutes, unsigned int type,
void(∗callback)(void))

Sets an RTC based alarm.
• int ssbx rtc unset alarm (unsigned int alarm id)

Disables an alarm.
• int ssbx start (void)

Starts the system, with various integrity checks.

6.5.3.1 Detailed Description

Additional management services come from the uVisor API: https://github.com/ARMmbed/uvisor/blob/master/docs/api/←↩
API.md

6.5.3.2 Function Documentation

6.5.3.2.1 ssbx rtc set alarm()

int ssbx rtc set alarm (

unsigned int ∗ alarm id,

unsigned int period minutes,

unsigned int type,

void(∗)(void) callback)

Sets an RTC based alarm.

Parameters

in period minutes the number of minutes before the alarm
in type 1 for periodic alarm or 0 for one shot alarm

Returns

ID of the alarm

6.5.3.2.2 ssbx rtc unset alarm()

int ssbx rtc unset alarm (

unsigned int alarm id)

Disables an alarm.

Parameters

in alarm id The alarm identifier

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 33

https://github.com/ARMmbed/uvisor/blob/master/docs/api/API.md
https://github.com/ARMmbed/uvisor/blob/master/docs/api/API.md

Deeptrust for Cortex-M

Returns

-1 if error (caller is not the owner of the alarm), 0 if OK

6.5.3.2.3 ssbx start()

int ssbx start (

void)

Starts the system, with various integrity checks.

Returns

See error codes

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 34

Deeptrust for Cortex-M

6.5.4 I/O API

List of functions

• int ssbx display display image (int image id)
Displays a pre-defined image on the display.

• int ssbx display prompt (unsigned char ∗kbd str, int ∗max length, int timeout, int message id, char mask,
int font id)

Displays a pre-defined prompt on the display and waits for user entry.
• int ssbx display write message (int message id)

Displays a pre-defined text message on the display.
• int ssbx touch get entry (char ∗dest, int ∗len)

Gets input from the virtual keypad on the touchscreen.

6.5.4.1 Detailed Description

This module offers some input-output services that allow interaction with users (keypad, touchscreen, display)

6.5.4.2 Function Documentation

6.5.4.2.1 ssbx display display image()

int ssbx display display image (

int image id)

Displays a pre-defined image on the display.

Depending on the current state (see ssbx set state), the image will be displayed or an error will be returned.

Parameters

in image id The image identifier

Returns

See error codes

6.5.4.2.2 ssbx display prompt()

int ssbx display prompt (

unsigned char ∗ kbd str,

int ∗ max length,

int timeout,

int message id,

char mask,

int font id)

Displays a pre-defined prompt on the display and waits for user entry.

Depending on the current state (see ssbx set state), the prompt will be displayed or an error will be returned.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 35

Deeptrust for Cortex-M

Parameters

kbd str The keyboard string

in timeout The timeout
in message id The message identifier

in mask The mask character to display in place of user input

Returns

See error codes

6.5.4.2.3 ssbx display write message()

int ssbx display write message (

int message id)

Displays a pre-defined text message on the display.

Depending on the current state (see ssbx set state), the text message will be displayed or an error will be returned.

Parameters

in message id The message identifier

Returns

See error codes

6.5.4.2.4 ssbx touch get entry()

int ssbx touch get entry (

char ∗ dest,

int ∗ len)

Gets input from the virtual keypad on the touchscreen.

This operation is allowed only if the PCI Secure Services box is not processing a PIN.

Parameters

dest The destination
in,out len The key length

Returns

See error codes

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 36

Deeptrust for Cortex-M

6.5.5 Key Manager

The Key Manager allows secure importation, storage and execution of cryptographic keys in cryptographic pro-
tocols offered by the Cryptographic API. It also handles X.509 certificates (importation, verification, public key
extraction).

Keys are assigned access rules that define what box can do what with the key (e.g. execute only, import, etc.)

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 37

Deeptrust for Cortex-M

6.5.6 Memory Manager

List of functions

• int ssbx memsec alloc (MEMSEC HANDLE ∗h, unsigned int size)
Allocates memory in the NVSRAM.

• int ssbx memsec free (MEMSEC HANDLE ∗h)
Releases allocated secure memory (NVSRAM)

• int ssbx memsec read (MEMSEC HANDLE ∗h, unsigned int offset, unsigned int size)
Reads from secure memory (NVSRAM)

• int ssbx memsec write (MEMSEC HANDLE ∗h, unsigned int offset, unsigned int size)
Writes to secure memory (NVSRAM)

6.5.6.1 Detailed Description

This of module is in charge of securely handling the memory allocation/deallocation in NVSRAM.

6.5.6.2 Function Documentation

6.5.6.2.1 ssbx memsec alloc()

int ssbx memsec alloc (

MEMSEC HANDLE ∗ h,

unsigned int size)

Allocates memory in the NVSRAM.

The battery backed NVSRAM holds automatically encrypted/decrypted data. This memory is wiped in case of
tamper attack on the system.

This allocator guarantees that data allocated by one box are visible only to this box.

Parameters

in h pointer to the pointer to the memory handle

in size size to allocate

Returns

See error codes

6.5.6.2.2 ssbx memsec free()

int ssbx memsec free (

MEMSEC HANDLE ∗ h)

Releases allocated secure memory (NVSRAM)

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 38

Deeptrust for Cortex-M

Parameters

h pointer to the memory handle

Returns

See error codes

6.5.6.2.3 ssbx memsec read()

int ssbx memsec read (

MEMSEC HANDLE ∗ h,

unsigned int offset,

unsigned int size)

Reads from secure memory (NVSRAM)

Parameters

h pointer to the memory handle

in offset The offset
in size size to be read

Returns

See error codes

6.5.6.2.4 ssbx memsec write()

int ssbx memsec write (

MEMSEC HANDLE ∗ h,

unsigned int offset,

unsigned int size)

Writes to secure memory (NVSRAM)

Parameters

h pointer to the memory handle

in offset The offset
in size The size

Returns

See error codes

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 39

Deeptrust for Cortex-M

6.6 PCI Security Services, Security functions dedicated to PCI PTS POI se-
curity

Modules

• EMV-Level 1 Smart Card
• Magnetic Stripe
• PIN handling

6.6.1 Detailed Description

Security functions dedicated to PCI PTS POI security are provided in this module, in particular for the PIN and
Magnetic Stripe data handling, the Smart Card communication.

This box is the only box privileged to access some devices. Therefore it proposes various services to interact with
those peripherals.

Associated services are accessed through RPC.

This box runs in an independent thread that:

• listens to RPC

• responds to RPC calls and checks the privileges of the caller

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 40

Deeptrust for Cortex-M

6.6.2 EMV-Level 1 Smart Card

List of functions

• int pci smartcard config (SCARD CONF sconf)
Configures the Smart Card communication.

• int pci smartcard transact APDU (unsigned char APDU Res[], unsigned int ∗APDU Res len, unsigned int
timeout, unsigned char APDU Req[], unsigned int ∗APDU Req len)

Performs an APDU exchange with the smart card. This function conforms to the EMV-Level 1 specification.
• int pci smartcard wait card insertion (unsigned int timeout)

Wait for the smart card being inserted.
• int pci smartcard wait card removal (unsigned int timeout)

Wait for the smart card being removed.

6.6.2.1 Detailed Description

This of module is in charge of handling communication with Smart Cards while conforming to the EMV Level-1
specification.

6.6.2.2 Function Documentation

6.6.2.2.1 pci smartcard config()

int pci smartcard config (

SCARD CONF sconf)

Configures the Smart Card communication.

Parameters

in sconf The smart card configuration

Returns

See error codes

6.6.2.2.2 pci smartcard transact APDU()

int pci smartcard transact APDU (

unsigned char APDU Res[],

unsigned int ∗ APDU Res len,

unsigned int timeout,

unsigned char APDU Req[],

unsigned int ∗ APDU Req len)

Performs an APDU exchange with the smart card. This function conforms to the EMV-Level 1 specification.

Parameters

APDU Res The apdu resource

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 41

Deeptrust for Cortex-M

Parameters

APDU Res len The apdu resource length

in timeout The timeout
APDU Req The apdu request

in APDU Req len The apdu request length

Returns

See error codes

6.6.2.2.3 pci smartcard wait card insertion()

int pci smartcard wait card insertion (

unsigned int timeout)

Wait for the smart card being inserted.

Parameters

in timeout The timeout

Returns

See error codes

6.6.2.2.4 pci smartcard wait card removal()

int pci smartcard wait card removal (

unsigned int timeout)

Wait for the smart card being removed.

Parameters

in timeout The timeout

Returns

See error codes

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 42

Deeptrust for Cortex-M

6.6.3 PIN handling

List of functions

• int pci authenticate issuer and icc public key (unsigned char ∗issuer certificate, int issuer certificate len,
unsigned char ∗issuer remainder, int issuer remainder len, unsigned char ∗issuer exponent, int issuer ←↩
exponent len, unsigned char ∗icc certificate, int icc certificate len, unsigned char ∗icc remainder, int icc ←↩
remainder len, unsigned char ∗icc exponent, int icc exponent len, CertificationAuthorities ∗CA key)

Authenticates both issuer public key and ICC public key.
• int pci get online pin (unsigned char pan[], int pan len, unsigned char encrypted pin[], int ∗encrypted ←↩

pin len)
Gets the ”online” PIN, i.e. encrypted with the DUKPT algorithm. The resulting encrypted PIN block is encoded
into ISO 9564 Format 0.

• int pci pin entry (int timeout entry, int timeout pin, int entry device, int display device)
Displays a message to the user instructing to enter the PIN. Then gets the pin from the specified entry device.

• int pci verify offline pin (unsigned char challenge[], int challenge len, int encrypt mode, unsigned int time-
out)

Verifies user PIN using the Smart Card.

6.6.3.1 Detailed Description

This module is in charge of handling PIN entry and processing according to the applicable PCT-PTS-POI standard.

6.6.3.2 Function Documentation

6.6.3.2.1 pci authenticate issuer and icc public key()

int pci authenticate issuer and icc public key (

unsigned char ∗ issuer certificate,

int issuer certificate len,

unsigned char ∗ issuer remainder,

int issuer remainder len,

unsigned char ∗ issuer exponent,

int issuer exponent len,

unsigned char ∗ icc certificate,

int icc certificate len,

unsigned char ∗ icc remainder,

int icc remainder len,

unsigned char ∗ icc exponent,

int icc exponent len,

CertificationAuthorities ∗ CA key)

Authenticates both issuer public key and ICC public key.

This function authenticates both issuer public key and ICC public key by a hardcoded Certification Authority
Public key.

As per EMV Book2, ICC can use either ICC Public Key or ICC PIN Encipherment Key for Offline Pin Authenti-
cation.

EMV Application kernel Identifies which ICC Public key to be used for Offline PIN Encipherment. But, SHI←↩
DDaemon uses ICC key only after Successful Authentication. Since CA key is hard coded inside SHIDDaemon,
Security is not compromised even when Application kernel provides part of keys and certificate as input to SHI←↩
DDaemon.

After use, the PIN buffered gets zeroed using memset.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 43

Deeptrust for Cortex-M

Parameters

in issuer certificate Issuer Public key certificate

in issuer certificate len Issuer Public key certificate length

in icc certificate ICC Public key certificate

in icc certificate len ICC Public key certificate length

Returns

Error code

6.6.3.2.2 pci get online pin()

int pci get online pin (

unsigned char pan[],

int pan len,

unsigned char encrypted pin[],

int ∗ encrypted pin len)

Gets the ”online” PIN, i.e. encrypted with the DUKPT algorithm. The resulting encrypted PIN block is encoded
into ISO 9564 Format 0.

It uses the PIN buffered using pci pin entry.

The context is checked so that only the right caller that has started the PIN entry process can call this function.

After use, the PIN buffered gets zeroed using memset, as well as DUKPT temporary buffers

Parameters

in store id The DUKPT store identifier
PIN The clear-text PIN
PAN The PAN

in PAN len The PAN length

Returns

See error codes

6.6.3.2.3 pci pin entry()

int pci pin entry (

int timeout entry,

int timeout pin,

int entry device,

int display device)

Displays a message to the user instructing to enter the PIN. Then gets the pin from the specified entry device.

The PIN must be entered before a certain amount of time. If not, the function returns.

In case of error, no PIN data remains anywhere in memory. In case of success, the PIN data is kept during at most
timeout pin

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 44

Deeptrust for Cortex-M

Parameters

in timeout entry The timeout for the entry of the PIN by the user

in timeout pin The maximum time during which the PIN is kept in memory. Otherwise it gets zeroed
using memset.

in entry device The entry device

in display device The display device

Returns

See error codes

6.6.3.2.4 pci verify offline pin()

int pci verify offline pin (

unsigned char challenge[],

int challenge len,

int encrypt mode,

unsigned int timeout)

Verifies user PIN using the Smart Card.

This function verifies encrypted pin block with ICC. This function receives Verify APDU header and embedded
encrypted pin block before sending it to ICC.

Parameters

out Verify APDU Res APDU response

Verify APDU Res len The verify apdu resource length

in timeout Maximum time allowed for APDU transaction. This value should be in Seconds.
Verify APDU Req The verify apdu request

out Verify APDU len APDU response length

Returns

Error code

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 45

Deeptrust for Cortex-M

6.6.4 Magnetic Stripe

PLANNED IN V2: This module is in charge of handling the magnetic stripe reading conforming to the SRED
requirements.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 46

Deeptrust for Cortex-M

6.7 uVisor API

Data Structures
• struct UvisorBoxAclItem

Macros
• #define UVISOR BOX CONFIG(box nameconst UvBoxAclItem module acl listuint32 t module stack ←↩

size, struct your context, verif key id)
Secure box configuration.

• #define UVISOR BOX NAMESPACE(static const char const namespace)
Specify the namespace for a box. C/C++ pre-processor macro (pseudo-function)

• #define UVISOR SET MODE(uvisor mode)
Set mode for the uVisor [temporary].

• #define UVISOR SET MODE ACL(uvisor mode, const UvBoxAcl main box acl list)
Set mode for the uVisor and provide background ACLs for the main box.

List of types
• typedef uint32 t UvisorBoxAcl

List of functions
• int check acl (uint32 t ∗p acl, uint32 t keyindex)

Hook called by uVisor during loading of secure boxes.
• int rpc fncall waitfor (const TFN Ptr fn ptr array[], size t fn count, int ∗box id caller, uint32 t timeout ms)

Handle incoming RPC, setting the parameter box id caller to the caller box ID.
• int uvisor box id self (void)

Get the ID of the current box.
• int uvisor box namespace (int box id, char ∗box namespace, size t length)

Copy the namespace of the specified box to the provided buffer.
• int uvisor box signingkey (int box id, int ∗keyindex)

Get the signing key ID of the specified box, hence its box privilege.
• void vIRQ ClearPendingIRQ (uint32 t irqn)

Clear pending status of IRQn.
• void vIRQ DisableIRQ (uint32 t irqn)

Disable IRQn for the currently active box.
• void vIRQ EnableIRQ (uint32 t irqn)

Enable IRQn for the currently active box.
• int vIRQ GetLevel (void)

Get level of currently active IRQn, if any.
• uint32 t vIRQ GetPendingIRQ (uint32 t irqn)

Get pending status of IRQn.
• uint32 t vIRQ GetPriority (uint32 t irqn)

Get priority level of IRQn.
• uint32 t vIRQ GetVector (uint32 t irqn)

Get the ISR registered for IRQn.
• void vIRQ SetPendingIRQ (uint32 t irqn)

Set pending status of IRQn.
• void vIRQ SetPriority (uint32 t irqn, uint32 t priority)

Set priority level of IRQn.
• void vIRQ SetVector (uint32 t irqn, uint32 t vector)

Register an ISR to the currently active box.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 47

Deeptrust for Cortex-M

6.7.1 Detailed Description

The payment application is to be developed by the payment terminal vendor. It dialogs with the 2 secure boxes
through remote procedure calls (RPC). The API is described below in this document. Shortly this API allows
to display trusted messages on the display, perform EMV-level 1 compliant APDU exchanges with the smart
card, perform PIN processing, capture Mag Stripe. . . basically everything required to perform an EMV Level-2
compliant payment.

Here you can find detailed documentation for:

1. Configuration macros, to configure a secure box and protect data and peripherals.

2. Box Identity, to retrieve a box-specific ID or the namespace of the current or calling box.

• A box identity identifies a security domain uniquely and globally.

• The box identity API can be used to determine the source box of an inbound secure gateway call.
This can be useful for implementing complex authorization logic between mutually distrustful security
domains.

• uVisor provides the ability to retrieve the box ID of the current box (uvisor box id self), or of
the box that called the current box through an RPC gateway via the box id caller parameter of
rpc fncall waitfor.

• The box ID number is not constant and can change between reboots. But, the box ID number can be
used as a token to retrieve a constant string identifier, known as the box namespace.

• A box namespace is a static, box-specific string, that can help identify which box has which ID at
run-time. In the future, the box namespace will be guaranteed to be globally unique.

• A full example using this API is available at mbed-os-example-uvisor-number-store.

3. Low level APIs, to access uVisor functions that are not available to unprivileged code (interrupts, re-
stricted system registers).

4. Type definitions.

5. Error codes.

Error reason Error code
PERMISSION DENIED 1
SANITY CHECK FAILED 2
NOT IMPLEMENTED 3
NOT ALLOWED 4
FAULT MEMMANAGE 5
FAULT BUS 6
FAULT USAGE 7
FAULT HARD 8
FAULT DEBUG 9

6.7.2 Data Structure Documentation

6.7.2.1 struct UvisorBoxAclItem

{ item description }

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 48

https://github.com/ARMmbed/mbed-os-example-uvisor-number-store

Deeptrust for Cortex-M

Data Fields

UvisorBoxAcl
acl

uint32 t
length

const volatile void ∗ start

6.7.3 Macro Definition Documentation

6.7.3.1 UVISOR BOX CONFIG

#define UVISOR BOX CONFIG(

box nameconst UvBoxAclItem module acl listuint32 tmodule stack size,

struct your context,

verif key id)

Secure box configuration.

C/C++ pre-processor macro (pseudo-function)

Parameters

box name Secure box name
module acl list List of ACLs for the module
module stack size Required stack size for the secure box

your context [optional] Type definition of the struct hosting the box context data

verif key id the Id of the key to use for the verification of the signature of the box #define
KEYINDEX FW 0x4E5F739aUL #define KEYINDEX TRUSTEDAPP 0xebf78ac4UL
#define KEYINDEX OTHERAPP 0x9cfb3459UL

Example: “‘ #include ”uvisor-lib/uvisor-lib.h”

// Required stack size #define BOX STACK SIZE 0x100

// Define the box context. typedef struct { uint8 t secret[SECRET SIZE]; bool initialized; State t current state }
BoxContext;

// Create the ACL list for the module. static const UvBoxAclItem g box acl[] = { {PORTB, sizeof(∗PORTB),
UVISOR TACLDEF PERIPH}, {RTC, sizeof(∗RTC), ∗ UVISOR TACLDEF PERIPH}, {LPTMR0, sizeof(∗←↩
LPTMR0), UVISOR TACLDEF PERIPH}, };

// Configure the secure box compartment. UVISOR BOX NAMESPACE(”com.example.my-box-name”); UVI←↩
SOR BOX CONFIG(my box name, g box acl, BOX STACK SIZE, BoxContext);

“‘

6.7.3.2 UVISOR BOX NAMESPACE

#define UVISOR BOX NAMESPACE(

static const char constnamespace)

Specify the namespace for a box. C/C++ pre-processor macro (pseudo-function)

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 49

Deeptrust for Cortex-M

Parameters

namespace The namespace of the box

The namespace of the box must be a null-terminated string no longer than MAX BOX NAMESPACE LENGTH
(including the terminating null).

The namespace must also be stored in public flash. uVisor will verify that the namespace is null-terminated and
stored in public flash at boot-time, and will halt if the namespace fails this verification. For now, use a reverse
domain name for the box namespace.

If you don't have a reverse domain name, use a GUID string identifier. We currently don't verify that the namespace
is globally unique, but we will perform this validation in the future.

Use of this configuration macro before UVISOR BOX CONFIG is required. If you do not wish to give your box
a namespace, specify NULL as the namespace to create an anonymous box.

Example:

#include "uvisor-lib/uvisor-lib.h"

// Configure the secure box.
UVISOR BOX NAMESPACE("com.example.my-box-name");
UVISOR BOX CONFIG(my box name, UVISOR BOX STACK SIZE);

6.7.3.3 UVISOR SET MODE

#define UVISOR SET MODE(

uvisor mode)

Set mode for the uVisor [temporary].

C/C++ pre-processor macro (object declaration)

Parameters

in uvisor mode The uvisor mode:

• UVISOR DISABLED = disabled [default]

• UVISOR PERMISSIVE = permissive [currently n.a.]

• UVISOR ENABLED = enabled

Example:

#include "uvisor-lib/uvisor-lib.h"

// Set the uVisor mode.
UVISOR SET MODE(UVISOR ENABLED);

Note:

1. This macro is only needed temporarily (uVisor disabled by default) and will be removed in the future.

2. This macro must be used only once in the top level yotta executable.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 50

Deeptrust for Cortex-M

6.7.3.4 UVISOR SET MODE ACL

#define UVISOR SET MODE ACL(

uvisor mode,

const UvBoxAclmain box acl list)

Set mode for the uVisor and provide background ACLs for the main box.

C/C++ pre-processor macro (object declaration)

Parameters

in uvisor mode The uvisor mode

• UVISOR DISABLED< = disabled [default]

• UVISOR PERMISSIVE = permissive [currently n.a.]

• UVISOR ENABLED = enabled

main box acl list List of ACLs for the main box (background ACLs)

Example:

#include "uvisor-lib/uvisor-lib.h"
// Create background ACLs for the main box.
static const UvBoxAclItem g background acl[] = {

{UART0, sizeof(*UART0), UVISOR TACL PERIPHERAL},
{UART1, sizeof(*UART1), UVISOR TACL PERIPHERAL},
{PIT, sizeof(*PIT), UVISOR TACL PERIPHERAL},

};

// Set the uVisor mode.
UVISOR SET MODE ACL(UVISOR ENABLED, g background acl);

Note:

1. This macro is only needed temporarily (uVisor disabled by default) and will be removed in the future.

2. This macro must be used only once in the top level yotta executable.

6.7.4 Typedef Documentation

6.7.4.1 UvisorBoxAcl

typedef uint32 t UvisorBoxAcl

{ item description }

6.7.5 Function Documentation

6.7.5.1 check acl()

int check acl (

uint32 t ∗ p acl,

uint32 t keyindex)

Hook called by uVisor during loading of secure boxes.

It is the responsibility of the platform developer to implement this function to restrict ACLs based on the box
privilege of the box being loaded.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 51

Deeptrust for Cortex-M

Parameters

p acl Pointer to the ACL of the box being loaded

in keyindex The key used to verify the box (hence its box privilege)

Returns

0 if the ACL conforms to the ACL policy

6.7.5.2 rpc fncall waitfor()

int rpc fncall waitfor (

const TFN Ptr fn ptr array[],

size t fn count,

int ∗ box id caller,

uint32 t timeout ms)

Handle incoming RPC, setting the parameter box id caller to the caller box ID.

When deciding which memory to provide for rpc fncall waitfor to use when writing box id caller, strongly
prefer thread local storage when multiple threads in a box can handle incoming RPC.

Parameters

in fn ptr array The function pointer array

in fn count The function count
box id caller The box identifier of the caller. After a call, box id caller is set to the box ID of the

calling box (the source box of the RPC). This is set before the RPC is dispatched, so that
the RPC target function can read from this location to determine the calling box ID. This
parameter is optional.

in timeout ms The timeout milliseconds

Returns

{ description of the return value }

6.7.5.3 uvisor box id self()

int uvisor box id self (

void)

Get the ID of the current box.

Returns

The ID of the current box

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 52

Deeptrust for Cortex-M

6.7.5.4 uvisor box namespace()

int uvisor box namespace (

int box id,

char ∗ box namespace,

size t length)

Copy the namespace of the specified box to the provided buffer.

Parameters

in box id The ID of the box you want to retrieve the namespace of

box namespace The buffer where the box namespace will be copied to

in length The length in bytes of the provided box namespace buffer

Returns

Return how many bytes were copied into box namespace.

Return values

UVISOR ERROR INVALID BOX ID if the provided box ID is invalid.

UVISOR ERROR BUFFER TOO SMALL if the provided box namespace is too small to hold
MAX BOX NAMESPACE LENGTH bytes.

UVISOR ERROR BOX NAMESPACE ANONYMO←↩
US

if the box is anonymous.

6.7.5.5 uvisor box signingkey()

int uvisor box signingkey (

int box id,

int ∗ keyindex)

Get the signing key ID of the specified box, hence its box privilege.

Parameters

in box id The ID of the box you want to retrieve the signing key ID.

keyindex Location where to receive the requested key ID

Returns

Status of execution

Return values

UVISOR ERROR INVALID BOX ID if the provided box ID is invalid.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 53

Deeptrust for Cortex-M

6.7.5.6 vIRQ ClearPendingIRQ()

void vIRQ ClearPendingIRQ (

uint32 t irqn)

Clear pending status of IRQn.

Parameters

in irqn IRQn

6.7.5.7 vIRQ DisableIRQ()

void vIRQ DisableIRQ (

uint32 t irqn)

Disable IRQn for the currently active box.

Parameters

in irqn IRQn

6.7.5.8 vIRQ EnableIRQ()

void vIRQ EnableIRQ (

uint32 t irqn)

Enable IRQn for the currently active box.

Parameters

in irqn IRQn

6.7.5.9 vIRQ GetLevel()

int vIRQ GetLevel (

void)

Get level of currently active IRQn, if any.

Returns

The priority level of the currently active IRQn, if any; -1 otherwise

6.7.5.10 vIRQ GetPendingIRQ()

uint32 t vIRQ GetPendingIRQ (

uint32 t irqn)

Get pending status of IRQn.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 54

Deeptrust for Cortex-M

Parameters

in irqn IRQn

Returns

pending status of IRQn

6.7.5.11 vIRQ GetPriority()

uint32 t vIRQ GetPriority (

uint32 t irqn)

Get priority level of IRQn.

Parameters

in irqn IRQn

Returns

The priority level of IRQn, if available; 0 otherwise

6.7.5.12 vIRQ GetVector()

uint32 t vIRQ GetVector (

uint32 t irqn)

Get the ISR registered for IRQn.

Parameters

in irqn IRQn

Returns

The ISR registered for IRQn, if present; 0 otherwise

6.7.5.13 vIRQ SetPendingIRQ()

void vIRQ SetPendingIRQ (

uint32 t irqn)

Set pending status of IRQn.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 55

Deeptrust for Cortex-M

Parameters

in irqn IRQn

6.7.5.14 vIRQ SetPriority()

void vIRQ SetPriority (

uint32 t irqn,

uint32 t priority)

Set priority level of IRQn.

Parameters

in irqn IRQn
in priority Priority level (minimum: 1)

6.7.5.15 vIRQ SetVector()

void vIRQ SetVector (

uint32 t irqn,

uint32 t vector)

Register an ISR to the currently active box.

Parameters

in irqn IRQn
in vector Interrupt handler; if 0 the IRQn slot is de-registered for the current box

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 56

Deeptrust for Cortex-M

7. PCI PTS POI 5.0 Guidance (DRAFT, to be modified)

This section explains how Deeptrust covers the PCI PTS POI 5.0 compliance, requirement by requirement.

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 57

Deeptrust for Cortex-M

8. References

[DOC1] uVisor Current Release as of Nov 29th https://github.com/ARMmbed/uvisor/blob/master/docs/api/←↩
API.md 11-29-2016

[2] ISO 9564-1:2011 https://en.wikipedia.org/wiki/ISO 9564 2011

[3] PIN Transaction Security (PTS) Point of Interaction (POI) Version 5 https://www.pcisecuritystandards.←↩
org/documents/PCI PTS POI SRs v5.pdf?agreement=true&time=1480425082529 09-2016

[4] PCI Linux User Guide Revision F Maxim Integrated Products UG21T20 01-24-2015

[5] MAX32550 User Guide Revision E Maxim Integrated Products UG25H05 07-01-2016

[6] ANSI X9.24-1:2009. http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.24-1%3A2009

2009

[7] Cortex™-M3 Devices Generic User Guide http://infocenter.arm.com/help/index.jsp?topic=/com.←↩
arm.doc.ddi0337h/index.html 2010

[8] Cortex™-M4 Devices Generic User Guide http://infocenter.arm.com/help/topic/com.arm.doc.←↩

dui0553a/index.html 2011

[9] Book 1 Application Independent ICC to Terminal Interface Requirements - November 2011

[10] uVisor API https://github.com/ARMmbed/uvisor/blob/master/docs/api/API.md

[11] MAX32550 Secure ROM User Guide Revision H Maxim Integrated Products UG25H04 10-25-2013

[12] MAX32550 security evaluation report Revision E Maxim Integrated Products RP25T05 05-04-2015

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 58

https://github.com/ARMmbed/uvisor/blob/master/docs/api/API.md
https://github.com/ARMmbed/uvisor/blob/master/docs/api/API.md
https://en.wikipedia.org/wiki/ISO_9564
https://www.pcisecuritystandards.org/documents/PCI_PTS_POI_SRs_v5.pdf?agreement=true&time=1480425082529
https://www.pcisecuritystandards.org/documents/PCI_PTS_POI_SRs_v5.pdf?agreement=true&time=1480425082529
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.24-1%3A2009
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337h/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337h/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/index.html
https://github.com/ARMmbed/uvisor/blob/master/docs/api/API.md

Deeptrust for Cortex-M

Index

ssbx rtc set alarm
Global management functions, 33

ssbx rtc unset alarm
Global management functions, 33

Application box(es), 27

check acl
uVisor API, 51

Cryptography, 32

EMV-Level 1 Smart Card, 41
pci smartcard config, 41
pci smartcard transact APDU, 41
pci smartcard wait card insertion, 42
pci smartcard wait card removal, 42

Global management functions, 33
ssbx rtc set alarm, 33
ssbx rtc unset alarm, 33

ssbx start, 34

I/O API, 35
ssbx display display image, 35
ssbx display prompt, 35
ssbx display write message, 36
ssbx touch get entry, 36

Key Manager, 37

Magnetic Stripe, 46
Memory Manager, 38

ssbx memsec alloc, 38
ssbx memsec free, 38
ssbx memsec read, 39
ssbx memsec write, 39

Operating system, drivers, C library, other libraries...,
28

PCI Security Services, Security functions dedicated to
PCI PTS POI security, 40

PIN handling, 43
pci authenticate issuer and icc public key, 43
pci get online pin, 44
pci pin entry, 44
pci verify offline pin, 45

pci authenticate issuer and icc public key
PIN handling, 43

pci get online pin
PIN handling, 44

pci pin entry
PIN handling, 44

pci smartcard config
EMV-Level 1 Smart Card, 41

pci smartcard transact APDU
EMV-Level 1 Smart Card, 41

pci smartcard wait card insertion
EMV-Level 1 Smart Card, 42

pci smartcard wait card removal
EMV-Level 1 Smart Card, 42

pci verify offline pin
PIN handling, 45

rpc fncall waitfor
uVisor API, 52

Secure Sandbox services (Generic Security functions),
30

Security Monitor, 29
ssbx display display image

I/O API, 35
ssbx display prompt

I/O API, 35
ssbx display write message

I/O API, 36
ssbx memsec alloc

Memory Manager, 38
ssbx memsec free

Memory Manager, 38
ssbx memsec read

Memory Manager, 39
ssbx memsec write

Memory Manager, 39
ssbx start

Global management functions, 34
ssbx touch get entry

I/O API, 36

UVISOR BOX CONFIG
uVisor API, 49

UVISOR BOX NAMESPACE
uVisor API, 49

UVISOR SET MODE ACL
uVisor API, 50

UVISOR SET MODE
uVisor API, 50

uVisor API, 47
check acl, 51
rpc fncall waitfor, 52
UVISOR BOX CONFIG, 49

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 59

Deeptrust for Cortex-M

UVISOR BOX NAMESPACE, 49
UVISOR SET MODE ACL, 50
UVISOR SET MODE, 50
uvisor box id self, 52
uvisor box namespace, 52
uvisor box signingkey, 53
UvisorBoxAcl, 51
vIRQ ClearPendingIRQ, 53
vIRQ DisableIRQ, 54
vIRQ EnableIRQ, 54
vIRQ GetLevel, 54
vIRQ GetPendingIRQ, 54
vIRQ GetPriority, 55
vIRQ GetVector, 55
vIRQ SetPendingIRQ, 55
vIRQ SetPriority, 56
vIRQ SetVector, 56

uvisor box id self
uVisor API, 52

uvisor box namespace
uVisor API, 52

uvisor box signingkey
uVisor API, 53

UvisorBoxAcl
uVisor API, 51

UvisorBoxAclItem, 48

vIRQ ClearPendingIRQ
uVisor API, 53

vIRQ DisableIRQ
uVisor API, 54

vIRQ EnableIRQ
uVisor API, 54

vIRQ GetLevel
uVisor API, 54

vIRQ GetPendingIRQ
uVisor API, 54

vIRQ GetPriority
uVisor API, 55

vIRQ GetVector
uVisor API, 55

vIRQ SetPendingIRQ
uVisor API, 55

vIRQ SetPriority
uVisor API, 56

vIRQ SetVector
uVisor API, 56

Revision E CONFIDENTIAL — Maxim Integrated Products Inc. — 60

	1 Document details
	1.1 Release Notes

	2 Copyright Notice
	3 Trademarks
	4 Introduction
	5 Security Architecture Presentation
	5.1 Primer on Cortex-M security mechanisms
	5.2 Hypervisor-based software isolation
	5.2.1 Code partitioning: Core firmware and Secure containers (aka `¨boxes`¨)
	5.2.2 Hypervisor initialization
	5.2.3 Context switches
	5.2.4 Summary of MPU protection effects

	5.3 Chain-of-Trust, firmware integrity and authenticity
	5.3.1 Secure Boot firmware and verification key are in immutable memories with integrity check
	5.3.2 No code loading/injection is possible except through a secure loader

	5.4 Summary of software items, keys and their protection
	5.5 Additional considerations
	5.5.1 Absence of backdoors
	5.5.2 Execution from internal memories
	5.5.3 Protection of external memories
	5.5.4 Early execution the Secure Boot ROM and of the isolation mechanism

	5.6 Hardware enforced security
	5.6.1 Cortex-M mechanisms: MPU, privileges, NVIC
	5.6.2 NVSRAM - Battery backed non volatile RAM
	5.6.3 Sensors
	5.6.4 Read-Only Memory, One-Time programmable memory

	5.7 Secure API
	5.8 Development process
	5.8.1 Source code control
	5.8.2 Bug tracking
	5.8.3 Code review
	5.8.4 Source code control
	5.8.5 Developer's guidelines
	5.8.6 Firmware versioning and management

	5.9 Conclusion
	5.9.1 Architecture diagram, PCI firmware perimeter

	6 Design Description
	6.1 Software API Specification
	6.2 Application box(es)
	6.3 Operating system, drivers, C library, other libraries...
	6.4 Security Monitor
	6.5 Secure Sandbox services (Generic Security functions)
	6.5.1 Detailed Description
	6.5.2 Cryptography
	6.5.3 Global management functions
	6.5.3.1 Detailed Description
	6.5.3.2 Function Documentation

	6.5.4 I/O API
	6.5.4.1 Detailed Description
	6.5.4.2 Function Documentation

	6.5.5 Key Manager
	6.5.6 Memory Manager
	6.5.6.1 Detailed Description
	6.5.6.2 Function Documentation

	6.6 PCI Security Services, Security functions dedicated to PCI PTS POI security
	6.6.1 Detailed Description
	6.6.2 EMV-Level 1 Smart Card
	6.6.2.1 Detailed Description
	6.6.2.2 Function Documentation

	6.6.3 PIN handling
	6.6.3.1 Detailed Description
	6.6.3.2 Function Documentation

	6.6.4 Magnetic Stripe

	6.7 uVisor API
	6.7.1 Detailed Description
	6.7.2 Data Structure Documentation
	6.7.2.1 struct UvisorBoxAclItem

	6.7.3 Macro Definition Documentation
	6.7.3.1 UVISOR_BOX_CONFIG
	6.7.3.2 UVISOR_BOX_NAMESPACE
	6.7.3.3 UVISOR_SET_MODE
	6.7.3.4 UVISOR_SET_MODE_ACL

	6.7.4 Typedef Documentation
	6.7.4.1 UvisorBoxAcl

	6.7.5 Function Documentation
	6.7.5.1 check_acl()
	6.7.5.2 rpc_fncall_waitfor()
	6.7.5.3 uvisor_box_id_self()
	6.7.5.4 uvisor_box_namespace()
	6.7.5.5 uvisor_box_signingkey()
	6.7.5.6 vIRQ_ClearPendingIRQ()
	6.7.5.7 vIRQ_DisableIRQ()
	6.7.5.8 vIRQ_EnableIRQ()
	6.7.5.9 vIRQ_GetLevel()
	6.7.5.10 vIRQ_GetPendingIRQ()
	6.7.5.11 vIRQ_GetPriority()
	6.7.5.12 vIRQ_GetVector()
	6.7.5.13 vIRQ_SetPendingIRQ()
	6.7.5.14 vIRQ_SetPriority()
	6.7.5.15 vIRQ_SetVector()

	7 PCI PTS POI 5.0 Guidance (DRAFT, to be modified)
	8 References

