infineon

MOTIX™ TLE989x/TLE988x

Firmware User Manual

About this document

Scope and purpose

This document provides technical information on the BootROM firmware features of the TLE989x/TLE988x and
technical guidance on how to interact with the device using embedded mechanisms and the user API functions.
The subsequent sections provide the necessary information for device configuration and BootROM firmware
API handling.

The BootROM firmware for the TLE989x/TLE988x family provides the following features:
« Startup procedure

« Support for connecting debuggers

+ Default Bootstrap Loader (BSL) for NVM programming and diagnostics

« Support for proprietary user BSL

+ NVM operations handling like programming, erasing, and verifying the NVM

+ Cryptographic library

Intended audience

The intended audience are software developers, application system integrators, and debugging tool vendors.

Firmware User Manual, Z8F80177275 Please read the sections "Important notice" and "Warnings" at the end of this document Rev. 1.0
www.infineon.com/embeddedpower 2023-05-16

https://www.infineon.com/embeddedpower

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

Table of contents

Table of contents

About thisdocument e 1

Tableof contents e e 2
1 Firmware architecture e 5
1.1 S ATU D ¢ et e e e 5
1.2 Default Bootstrap Loader (BSL)uuuurtt ittt et et et 6
1.3 User Bootstrap Loader (UBSL)ttt ittt ettt et ieiee e 6
1.4 Utility fUNCEIONS . oo e ettt e e 7
1.5 Cryptographic library e e 7
1.6 Secured SOftware CoNtaINer ittt e 7
2 BOoOt MOES e e 8
2.1 B L MO . ..ottt e 8
2.1.1 HOSt SYNChronization et s 8
2.1.2 Mediaframe format. 9
2.1.3 Media frame timingot e e 10
2.14 Media frame timeoutt e 10
2.2 [0 ESY =T g 4 T Yo L 11
221 DebUg MO e 11
222 S CUIE DOt . . oottt e e e 11
2.2.3 Reset pin configurationo i e e e 11
2.3 ErrOr State . o .o e e 11
3 Programmingmodel. i e 12
3.1 Memory protectionand handling........ ... e 12
3.1.1 Read-wWhile-write (RWW) . ..o e e e et 12
3.1.2 NVM read proteCtion e e e 13
3.1.3 Permanent ProteCtion it e e e 13
3.14 Service algorithm . ..o e e 13
3.2 Cryptographic operations and SECUNitYovt it e 14
3.2.1 AES OPEratiON . ottt e e 14
3.2.2 1011 7X@ oY oY= | o 1 1S 15
3.2.3 KEY Wt 0P atiON L . ettt e e 16
3.2.4 Secured software CoNtaiNer e e 17
3.2.5 Secure software downloadt e 17
33 DEDUg INTEIfaCE et 18
4 APl documentation e e 19
4.1 BSL COMMaANAS . .\ttt ettt e 19
4.1.1 CmMd OX86 MEMOIY EXECUTE . o o v vttt ettt ettt ettt ettt ettt ittt eeeeeeeeenanns 20
4.1.2 Cmd 0x98 NVM permanent protection clear.ottt 21
4.1.3 Cmd OXOC NVM VeI Y . et e et ettt e 22
Firmware User Manual, Z8F80177275 2 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

Table of contents

4.1.4 Cmd 0x93 BSLbaud rate set.ouuuiii i e e 23
4.1.5 CmMd 0X92 DEVICE MBS . . vttt ettt ettt ettt ettt e e et e e 24
4.1.6 Cmd 0x89 NVM permanent protection set..... ..ottt e 25
4.1.7 CmMd OX05 MM O Y WO . . ettt et ettt et ettt ettt aaaeaniinaas 26
4.1.8 Cmd OX87 MemMOrY r€ad . . oottt ettt et ettt ettt e e 27
4.1.9 CMd OXB8 NVM BraSE . o vttt ettt ettt ettt e et e e ettt e e ettt et e 28
4.1.10 Cmd OXOD NVM 100TP W . o o ettt ettt et e et ettt et et aeiiee e 29
4.1.11 CmMA OX8E NVM 100T P read . ..ottt ettt ittt ittt et et ettt eeeens 30
4.1.12 CmMd OX9T NVM L100TP @rase .« o e ettt ettt et et ettt e e et ee e e e 31
4.1.13 CmMd OX99 UBSL SiZ€ SOl . o vttt ettt et e et e e e e 32
4.1.14 Cmd OX9C UBSL privilege st ovi e e et 33
4.1.15 ReSP OX80 Data reSPONSE . . ettt ettt ettt e et e e e 34
4.1.16 Resp 0x81 Acknowledge reSpONSE . ..ottt e 35
4.2 USEr AP TOUTINGES . o oottt i e e e e e e e e e 36
42.1 user_nvm_service_algorithm e 38
4.2.2 USEI_NVIM _MaAPramM_IECOVEL . . et ittt e ettt e et et et e e e e e ta et e e e eeaeennnn 39
4.2.3 USer_NVIM _MaPram NIt . oottt e it 40
424 U TSy =T ol T B =<1 AP 41
425 USEI NVIM_ECC_CRECK . .ottt et e e e e e e e e e e e 42
4.2.6 user_nvm_ecC_addr_get. e 43
4.2.7 USEr_NVIM _L00T P _rad . .ttt ettt ettt et e 44
4.2.8 USEr_NVIM _ L0 W . o ettt ettt et e e e e e e 45
4.2.9 USEr_NVIM _ 100 D BraSe . ettt t ittt e e e e e e 46
4.2.10 USEr_NVM _CONfig et . ottt e e e e e 47
4.2.11 usSer_Nvm_temp_protect_get.t e 48
4.2.12 user_nvm_udata_temp_protect_Set.o e 49
4.2.13 user_nvm_ucode_temp_protect_Set..........o it 50
4.2.14 user_nvm_ubsl_temp_protect_Set.ttt e 51
4.2.15 user_nvm_udata_temp_protect_cClear.t e 52
4.2.16 user_nvm_ucode_temp_protect_clear. ...t 53
4217 user_nvm_ubsl_temp_protect_clear. ...t e e e e 54
4.2.18 (L= 0 A0 0 T o == = = 1] < 55
4.2.19 USEI_NVIM _SECEON_BIASE . o o ittt ittt ettt ettt 57
4.2.20 USEY NV PAE W . o ettt ettt e et e ettt e e 59
4221 TR =10 0 .01) P 62
4.2.22 user_crypto_aes_cmac_generate_start......... ... i i e 63
4.2.23 user_crypto_aes_cmac_generate_update.o e 64
4.2.24 user_crypto_aes_cmac_generate_finish.......... .. 65
4.2.25 user_crypto_aes_cmac_verify_start. ... 66
4.2.26 user_crypto_aes_cmac_verify_update....... ... e 67
4.2.27 user_crypto_aes_cmac_verify_finish...... ... i i 68
4.2.28 USer_Cryplto_aes_Start. 69
Firmware User Manual, Z8F80177275 3 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

Table of contents
4.2.29 USEr_CrYPLO_aes _UPAate . . e e e e e e 70
4.2.30 user_crypto_aes_finisho e e 71
4.2.31 USer_CrYPLO_KEY W . .t e e e 72
4.2.32 USEr_CrYPTO_KEY BraSE . i e ettt e e e 73
4.2.33 USEr_CrYPLO_KeY VeI Y . oo e e 74
4.2.34 USer_NVM ISt _Nandler. ... e e 75
4.2.35 user_secure_download _Startottt e 76
4.2.36 user_secure_download_uUpdatettt e e e 77
4.2.37 user_secure_download_finish....... ... i e e 78
4.2.38 USer_CaChe _OPeratioN . ..o e 79
4.2.39 user_secure_dualboot 80
4.2.40 USEI_UDS| SIZE MBS O . ettt e e e 81
4.2.41 USer_NVM _perm _protect_Sel.o i et et e 82
4.3 Data types and structure referenceot e e e 83
43.1 USer APl data tyPes . .ottt i e e e 83
4.3.2 User APl enUMEratioNS v it i ettt e e e 97
4.3.3 CONStaNt rEfErENCE . . ottt e e 102
5 (€7 1 213 T T 103
6 ReVISION MiStOrY i e 105
DiSClaimer e e 106
Firmware User Manual, Z8F80177275 4 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

1 Firmware architecture

1 Firmware architecture
Startup
Default BSL User BSL
- . - Secured software
Utility functions Cryptographic library container
Hardware abstraction layer

I:l Built-in |:| User-defined

Figure 1 Firmware architecture

1.1 Startup

The Startup module includes these features:

+ It executes the first software-controlled operation in the BootROM that is automatically executed after
every reset.

« It performs different device initialization steps and enters the operation mode determined by the provided
configuration.

« Executed with the highest privilege level, it cannot be called from a debugger, and cannot be re-entered
after the sequence completion.

« ltusesthe various routines of the lower abstraction levels.

The Startup module expects the startup configuration in the first page of the User BSL segment (UBSL). A

detailed description of the startup page and its parameters can be found in the MCU chapter of the user

manual.

Firmware User Manual, Z8F80177275 5 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

1 Firmware architecture

1.2 Default Bootstrap Loader (BSL)

The Default Bootstrap Loader (BSL) module supports uploading user application code into the NVM using a
message-based command request-and-response communication. The communication interface is UART over
CAN.

Process command

T l

Get command Create reply frame

Command layer

Media layer

Receive frame Send frame

HAL (CAN, NVM, ...)

Figure 2 BSL architecture

Command layer

This layer is responsible for parsing and processing the command. If the command is valid, it will perform the
requested operation and prepare the reply frame.

Media layer

This layer is responsible for receiving data over the communication interface and assembling it into a complete
frame. Intraframe timeout measurement is used to keep track of frame reception. Only correct frames received
within the intraframe time window will be further transported to the command layer.

A media frame is used to transmit data to the device or to receive a response from the device.

1.3 User Bootstrap Loader (UBSL)

The UBSL module supports uploading user application programs into the NVM using proprietary user-defined
protocols and flows. Firmware functions available via User Firmware API are available for execution of the
required low level operation for NVM programming, use of the Cryptographic library and other essential
routines. The UBSL can optionally be executed before branching to the user code. The UBSL is not a part of the
BootROM code.

Firmware User Manual, Z8F80177275 6 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

1 Firmware architecture

1.4 Utility functions

The BootROM exposes some library functions to the user mode software. These library functions allow
configuration of the device boot parameters and access the NVM.

The main features of the utility functions are the following:

+ Reading and writing the various 100TP pages inside the NVM

+ Writing and erasing the NVM pages and sectors

« Configuring the BSL parameters (for example, timeout configuration, NAD address)
+ Retrieving the customer identification number

+ Performing a RAM MBIST test

« Checking for single and double ECC errors in the NVM

1.5 Cryptographic library

The Cryptographic library provides support for cryptographic operations using security keys embedded in the
protected key storage. It supports these algorithms:

« AES256
« CMAC

The selected key is accessed in the background according to the argument referencing the key ID in the key
storage. The secure context code and temporary data remains inaccessible for user-context routines.

Note: Only one cryptographic operation can be executed at a time. If a cryptographic operation was started
by the corresponding API start function, another cryptographic operation can only be started if the API
finish function of the previously started operation was called.

1.6 Secured software container

The Secured Software Container can be used to protect specific code from being read by third parties. It can be
installed by using a dedicated BootROM firmware API.

Firmware User Manual, Z8F80177275 7 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

2 Boot modes

2 Boot modes

RESET

Preparation phase
- RAM MBIST
- RAM initialization optional - depending on RESET_TYPE

- Read Bootlatch
- Set Reset pin config

- Set Protection } optional - depending on CfgSec setting

\ 4 A 4 A\ 4
User mode

Error state BSL mode . S
(jump to application)

Figure 3 BootROM firmware startup

2.1 BSL mode

The BSL mode follows a serial communication protocol between a host and the device. The protocol is
UART-based (half-duplex), the interface is over the built-in CAN transceiver. The BSL mode is entered when the
host sends the correct passphrase (see Table 1) within the configured no-activity-counter time (NAC). The NAC
value is stored in the startup page.

In BSL mode the FS_WDT is disabled.

2.1.1 Host synchronization

The host synchronization consists of a single BSL frame with the format:

+ [length] + [NAD] + [PASSPHRASE] + [chk]

The [PASSPHRASE] is composed by the ASCII values of the word "PASSPHRASE" as shown in the table below.
The passphrase frame in the Default BSL protocol is extended by a checksum byte field. Details about frame

encapsulation are given in Table 1. Upon successful reception of a valid passphrase frame, the device sends
back single acknowledge byte 55, and is ready for receiving BSL commands.

Table1 Passphrase frame format

0 1 2 3 4 5 6 7 8 9 10 11 12

Length |[NAD |0x50 |0x41 |0x53 |0x53 |0x50 |0x48 |0x52 |0x41 |0x53 |0x45 |Chk
llPU IIAII “S“ IISII ||Pl| IIHII IIRII IIAII IISII llEll

The NAD address is stored in the Startup page when the device is programmed. A detailed description of the
Startup page can be found within the MCU chapter in the User's Manual.

The host synchronization is completed when the full passphrase has been received before the NAC timer
expires.

Note: If no valid startup configuration is installed, the device enters the Default BSL and infinitely waits for a
valid passphrase.
Firmware User Manual, Z8F80177275 8 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

2 Boot modes

2.1.1.1 NAD address

The NAD field specifies the address of the active responder node (only responder nodes have NAD addresses).
Table 2 lists NAD address ranges supported by the BootROM firmware.

Table 2 NAD address range

NAD value Description

004 to FEL This is the valid address range for addressing an individual responder node.

FFy This is the broadcast address for addressing responders concurrently. It is the
default address if no NAD value is programmed.

2.1.1.2 NAC time

The No-Activity Counter (NAC) value defines a time window with a granularity of 5 ms. After reset release, the
firmware is able to receive a BSL passphrase within the specified time frame. If no BSL passphrase is received
before the NAC expires, the firmware code proceeds to execute the user code. In case of an invalid NAC value

in the NAC location, a “wait forever” (NAC set to FFy) is given to the Default BSL module. A changed NAC value
takes effect only after the next reset.

The maximum NAC timeout is 140 ms (NAC set to 1Cy). The BootROM firmware reads the NAC from the Startup
page and sets the NAC time window accordingly. The translation from NAC value to NAC time window is
explained in Table 3.

Table 3 NAC time window

NAC value Timeout behavior

<02y The Default BSL window is closed, no BSL connection is possible and execution
jumps to user code immediately.

02 to 1Cy There is a timeout delay of NAC*5 ms before jumping to user code.

>1Cq No timeout is used. The BootROM firmware switches off the FS_WDT and waits

indefinitely for a Default BSL connection attempt.

Note: The time quantum of 5 ms refers to a nominal HP_CLK frequency not considering actual frequency
deviations imposed by the HP_CLK accuracy.

2.1.2 Media frame format

The media frame uses the general [length] [message] [chk] format, regardless of the communication interface.
Media frames are used to send data to the device or to receive a response from the device.
+ [Length] denotes the number of successive bytes in the frame.

+ [Message] contains the data block sent to or received from the device. The size is in the range of 1 to 133
bytes.

+ [Chk]is the media frame checksum. It is calculated over the length byte and the message bytes.

Table 4 Media frame format

1 byte 1 up to 133 bytes 1 byte

Length Message Chk

Firmware User Manual, Z8F80177275 9 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

2 Boot modes

The message contained in the media frame has the format [message type] [arguments]. Depending on the
message type, the message is referred to as "command frame" or "response frame".

+ [Message type] is a CMD_ID (BSL command number) or a RESP_ID (BSL response number).

+ [Arguments] are optional with a length of 0 to 132 bytes. It contains the arguments required for a specific
BSL command or BSL response.

Table 5 Message contained in a media frame

1 byte 0 up to 132 bytes
Message type Arguments
2.1.3 Media frame timing

The host has to add a delay after each sent Default BSL command header before sending the next one. The
BootROM firmware also requires an additional waiting time to process the complete received Default BSL
command. During this period of time, no response message can be provided by the BootROM firmware and
hence the host cannot send new commands. The host must wait this length of time before sending a new
command.

To give the BootROM firmware time to process each byte in a CMD or EOT frame, the byte and frame timing
must comply with the values shown in Table 6.

Table 6 Default BSL byte and frame timing limits
Delay type Minimum interval duration [ps]
Between bytes 3.7

Host waiting time after reception of a response before |20
a new frame can be sent

Certain Default BSL commands involve NVM write or erase operations and hence need longer processing times.
The host waiting time is longer before a command response can be requested or before a result is sent back.

As an example, changing a value in an already programmed NVM page (which happens if a setting is being
changed) requires the following steps:

+ Read the full page into the hardware assembly buffer
« Update the hardware buffer with new data

+ Program the page from the hardware assembly buffer
+ Erasetheold page

This complete procedure takes approximately 8 ms (nominal value). The processing time must always be taken
into account.

2.1.4 Media frame timeout

To keep track of Default BSL frame transmission violations, a frame transmission timeout is used between the
different media frames. Default BSL frame transmission timeouts depend on whether a host synchronization
has been done or not:

+ Before host synchronization: The NAC timeout value is used as the frame timeout. If a timeout is reached,
this means that the NAC timer has expired.

+ After host synchronization: The BootROM firmware starts polling the incoming bytes. If a valid frame is
received before the frame timeout, the firmware continues parsing and handling the BSL command.

When a frame timeout occurs, the firmware clears the receive buffer and re-starts the timeout to receive a
new media frame. The frame timeout is set to 280 ms (nominal value).

Firmware User Manual, Z8F80177275 10 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

2 Boot modes

2.2 User mode

In the user mode, the BootROM firmware hands over the control to the user application code. To enter the User
mode, the TMS pin needs to be kept low during startup.

The entry address for the user code after the startup sequence is determined by the Arm® Cortex®/-M3
compliant vector table as described within the MCU chapter in the User Manual. To transition into the user
application code, the BootROM firmware loads the initial stack pointer into the stack pointer register and jumps
to the user reset vector address. Both, the initial stack pointer and the user reset vector are specified within the
Startup page as described in the MCU chapter in the User Manual. They must be configured during building and
linking of the application software.

2.2.1 Debug mode

The Debug mode is an option of the User mode and allows the user to debug the user code via SWD interface.
To enter the Debug mode, the TMS and P0.0 pins need to be kept high during startup. More information can be
found within the MCU chapter of the User Manual.

In Debug mode the FS_WDT is disabled.

Note: The SWD connection is only available if no permanent memory protection is set. Otherwise, the SWD
connection is disconnected from the CPU.

2.2.2 Secure boot

The Secure Boot feature prevents the UBSL code from being executed if the data integrity is no longer given. For
this purpose, the boot key has to be stored along with the UBSL code size and the Secure Boot signature within
the Startup Page. If all conditions are met, the BootROM firmware proceeds with the Secure Boot.

A detailed description of the Secure Boot along with its configuration via the Startup page can be found within
the MCU chapter in the User Manual.

While Secure Boot execution the FS_WDT is enabled.

2.2.3 Reset pin configuration
The BootROM firmware further supports the configuration option for the P0.10 I/0 function. By default, this pin
is configured as GPIO but can be reconfigured as a dedicated reset pin.

The configuration can be changed by using the BootROM firmware API to change the 100TP entry
PMU_START_CONFIG. The PMU_START_CONFIG 100TP entry is then read during startup to eventually program
the behavior of pin P0.10. If the startup sequence fails, for example, due to a corrupted 100TP section, a default
configuration of the P0.10 behavior is installed. See User Manual for more details.

2.3 Error state

To ensure that the device is properly booted, error checking and error handling are added to the startup
procedure. If a startup error occurs, the BootROM firmware enters an endless loop.

In Error state the FS_WDT is enabled.

1 Arm and Cortex are registered trademarks of Arm Limited, UK

Firmware User Manual, Z8F80177275 11 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

3 Programming model

3 Programming model
3.1 Memory protection and handling
3.1.1 Read-while-write (RWW)

The diagram below illustrates the read-while write (RWW) functionality which allows for example code
execution from FLASH1 while data is written to FLASHO.

z FLAS.Hl User Code User Code User Code User Code
O Execution o
) A A A e
= v [user nvm operation] return return return
8
3
¢ | BootROM
w | Execution
»
A A "t
user_nvm_isr_handler user_nvm_isr_handler
Interrupt
Controller
A AMEMCTRL >
[start FSM] MEMCTRL [start FSM] ¢
v Interrupt v Interrupt
FLASHO
Operation o
L
t
\4 Vv Vv Vv Vv
Time tx Time ty Time
[clocks] [from datasheet] [clocks] [from datasheet] [clocks]
Figure 4 RWW sequence

The entire operation consists of one or two steps (two in the example above). Each step handles one NVM
operation like for example a write or erase operation. When the user calls the [user nvm operation] API from
FLASH1, targeting FLASHO, the API validates the arguments and starts the FSM of the NVM to perform the first
of the two operations. Directly after starting the FSM, the BootROM firmware returns to the user application
code. As soon as the NVM operation finishes, an interrupt is raised, calling the user_nvm_isr_handler. In case
only one operation needs to performed by the NVM, the ISR handler of the BootROM firmware returns to the
user application code and the RWW sequence is finished. In case a second operation needs to be performed by
the NVM, the user_nvm_isr_handler starts the FSM a second time and returns to the user application code until
the FSM finishes the second time, raising the ISR a second time. The ISR handler updates the result in the result
register and concludes the entire operation.

During the NVM operation FLASHO is in busy state and read accesses to it would be pended. However,

code execution and reading on FLASH1 in the meantime is possible. The RWW feature is available for
user_nvm_page_write, user_nvm_page_erase and user_nvm_sector_erase and is activated by default if the
operation source and target are not in the same memory. This could be for example code from FLASHO writes
to FLASH1 or code from PSRAM writes to FLASHO/1. The user can explicitly deactivate the RWW feature, causing
the API to only return to the caller after the entire NVM operation has been completed.

If the user data part of FLASHO is being written or erased, the user must not access the FLASHO while the
BootROM firmware is executing. Otherwise, the access might result in a device reset due to interference

with the BootROM firmware execution. For the case the RWW is disabled this can, for example, occur if the
BootROM firmware is interrupted by an ISR. In case the RWW is enabled it can, for example, occur if the
user_nvm_isr_handler is interrupted by another ISR. In both cases, the corresponding ISR must not be located

Firmware User Manual, Z8F80177275 12 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

3 Programming model

within FLASHO (including the vector table) or interrupts should be disabled as long as the API call did not
ultimately finish.

Note: The RWW interrupt handler can be interrupted by higher priority interrupts.

3.1.2 NVM read protection

The read protection can be set individually for each segment (User Code, User Data, User BSL). It prevents

the content of a protected segment from being read by other segments, with permission determined by

the access-privileged level. If a read protection is set for any segment, the Serial Wire Debug (SWD) port is
disconnected from the MCU and a debugger connection cannot be established anymore. More information on
SWD and debugging can be found within the MCU chapter of the User Manual.

Note: The flash read protection is controlled by the permanent protection as described in Permanent
protection.
3.1.3 Permanent protection

If the permanent protection is set for the target NVM segment, it blocks any device-internal BSL command
which can be used to download code to the device. The permanent protection can be configured in the default
BSL mode and secured with a passphrase. The permanent protection is activated during the boot process by
the BootROM firmware before the default BSL mode is entered and before a debugger can establish an SWD
connection.

The permanent protection cannot be modified with code executed from within the MCU. It can only be modified
via the Default BSL commands Cmd 0x89 NVM permanent protection set and Cmd 0x98 NVM permanent
protection clear. More information on the permanent protection can be found within the MCU chapter in the
User Manual.

3.14 Service algorithm

The service algorithm (SA) is executed during startup as part of the map RAM initialization function in case
failures occurred during the map RAM initialization. The SA scans the entire data flash sector and tries to
repair faulty pages if possible. The SA further scans for pages which point to the same map RAM entry (double
mapping). Up to one double mapping can be resolved by deleting one of the two pages. If more than one
double mapping exist, the SA cannot repair them. The SA can also be started by the user via the user API of the
BootROM firmware.

The SAis enabled by default but is skipped if the User Code segment (UCODE) is write protected. However, this
can be changed via the NVM_SA_WITH_PROT entry of 100TP to run the SA regardless of an active UCODE write
protection.

Firmware User Manual, Z8F80177275 13 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

3 Programming model

3.2 Cryptographic operations and security

The BootROM firmware API provides a variety of cryptographic operations to encrypt and decrypt data.
Furthermore, the API can be used to download and store software in a secured context.

3.2.1 AES operation

user_crypto_aes_start

(from CryptoAPI)

[success]

P user_crypto_aes_update

(from CryptoAPI)

[ongoing] [fail] —

[success]

streaming
status

[complete]

l

A

user_crypto_aes_finish

(from CryptoAPI)

Figure 5 AES operation

First, the user_crypto_aes_start function is called along with the arguments for the AES mode, the key ID, and
a pointer to the initial CBC vector. This function initializes the necessary internal variables and internal buffers.
After the successful execution of the start function, the user_crypto_aes_update function has to be called

at least once to perform the actual cryptographic operation. The update function requires a data structure
containing a pointer to the input/output buffer including the pointer to the buffer and the buffer length for
each. After successful execution of the update function, the output buffer length variable contains the number
of bytes written to the output buffer.

The update function can be called multiple times if the user wants to process the data in multiple steps. For
example, if the total input data length is 512 bytes, the update function can be called four times, with each call
processing 128 bytes of data. It can also process 512 bytes data in a single call. Each call of the update function
updates the result. At the end, the user_crypto_aes_finish function concludes the cryptographic process and

Firmware User Manual, Z8F80177275 14 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

3 Programming model

resets the internal states and variables. The input data is optional. If no additional input data has to be passed,
the input length can be set to 0.

Note: If one of the steps fails, the finish function must be called as well to reset the internal states and
variables.

The AES decryption is done in the same way like encryption but does not require an initial vector as it is already
part of the ciphertext.

3.2.2 CMAC operation

CMAC Generate

user_crypto_aes_
generate_start

{

(from CryptoAPI)

[success]

user_crypto_cmac_
generate_update

{

(from CryptoAPI)

[ongoing] 0 [fail] —

[success]

streaming
status

[complete]

user_crypto_cmac_
generate_finish

A

(from CryptoAPI)

Figure 6 CMAC operation

First, the user_crypto_aes_cmac_generate_start function is called, with a key ID as argument. This function
initializes the necessary internal variables and internal buffers. After the successful execution of the start
function, the user_crypto_aes_cmac_generate_update function has to be called at least once to perform the
actual cryptographic operation. The update function requires a data structure containing a pointer to the input
buffer and the input data length. It will add the passed input data to the MAC calculation and update the
intermediate result. The update function can be called multiple times if the user wants to process the data in
multiple steps.

At the end, the user_crypto_aes_cmac_generate_finish function completes the MAC generation and resets the
internal states and variables. The input data is optional. If no additional input data has to be passed, the input

Firmware User Manual, Z8F80177275 15 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

3 Programming model

length can be set to 0. The output buffer length variable indicates the length of MAC that was written to the
output buffer.

Note: If one of the steps fails, the finish function must be called as well to reset the internal states and
variables.

The verification functions for start (user_crypto_aes_cmac_verify_start) and update
(user_crypto_aes_cmac_verify_update) are used like their generation counterparts. The
user_crypto_aes_cmac_verify_finish function compares the MAC given as argument to the MAC
being generated by the verify functions. If they match, it returns ERR_LOG_SUCCESS, otherwise
ERR_LOG_CODE_CMAC_VERIFY_FAIL.

3.2.3 Key write operation
AES Encryption
&
2
\ 4
CMAC Generate
\ 4
g 4
Z user_crypto_key_write
(from CryptoAPI)
Figure 7 Key write operation

Writing a new key is done in three consecutive steps. As described below, these are the AES encryption, CMAC
generation, and eventually the key write operation itself.

1. AES Encryption
Initialize the new key variable new_key of type user_key_t and encrypt it with AES by calling the
appropriate API functions (see AES operation) with the CBC mode and encrypt_key_id as arguments.
The 36 bytes of input data are then transformed into the output data, consisting of 64 bytes.

2, CMAC Generate
After the AES encryption, the output of the encryption, the target_key_id, and encrypt_key_id are

assembled together as user_key_write_params_t. The user_key_write_params_t are then used for the
CMAC generation (see CMAC operation) to calculate the 16-byte MAC.

3. Writing the new crypto key

Firmware User Manual, Z8F80177275 16 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

3 Programming model

As the final step, the user_key_write_params_t and the generated MAC signature are passed as
user_key_write_t to the user_crypto_key_write function. It validates the passed MAC signature against
the calculated MAC from user_key_write_params_t. If they match, it continues with decrypting the
ciphertext of new_key to get the plain new_key. In the end, the plain new_key is written into the target
key slot and its redundant slot.

3.2.4 Secured software container

The Secured Software Container is used to store software which shall not be accessible besides its execution.
This can for example be used to mitigate the risk of leaks to keep the software closed source. Code stored
within the Secured Software Container can be executed by the CPU but it cannot be read from, even though it
shares the same privilege level as the UCODE segment. Reading the Secured Software Container will resultin a
bus fault.

Using the Secured Software Container will block the SWD connection due to the permanent protection installed
by the BootROM firmware. Hence, it is important to prepare the UBSL to be able to flash code into the Secured
Software Container and further to perform an update at a later point in time. To flash code into the Secured
Software Container, a dedicated BootROM firmware API has to be used by the UBSL as described in Secure
software download.

For more information see the MCU chapter within the User Manual.

3.2.5 Secure software download

The secure download flow allows downloading encrypted data into a dedicated Secured Software Container.
During the operation, the encrypted data will be decrypted and then written into the Secured Software
Container. The data to be downloaded needs to be encrypted beforehand with AES CBC and the correct key.

Downloading procedure

To perform a secure download, the user_secure_download_start has to be called along with the key_id,

the number of sectors to be written and a pointer to the input buffer of the data. The start function then
initializes the secure download by erasing the secure container, erasing the PSRAM, and the initialization of the
cryptographic context for the AES CBC decryption. The start function expects the first two cipher blocks of input
data (32 bytes), allowing the following secure download procedure to output the decrypted data page aligned.

After the secure download was started successfully, the user_secure_download_update function is used to
continue the secure download. It has to be called at least once to generate the decrypted data and expects the
page index as well as a pointer to the input buffer. Upon a successful execution of the update function, the 128
bytes of decrypted data are written into the requested Secured Software Container. The update function can be
called multiple times if more data needs to be written to the Secured Software Container. The target address is
determined by

[Secured Software Container start address] + [page_index] * 128

At the end of the secure software download, the user_secure_download_finish function needs to be called once
to reset the internal states, variables, and the cryptographic context. The download can be verified afterwards
with the CMAC verification APIs. In case the verification fails, the user is advised to repeat the secure software
download.

Example

The complete procedure for the secure software download and its preparation is summarized in the following
example where 240 bytes of code are downloaded into the Secured Software Container:

Preparation

1. Add padding to make the data page aligned (being 256 bytes)

2. Encrypt the 256 bytes with AES CBC and perform a CMAC generation on the data to get 288 bytes of
encrypted data along with a 16 bytes signature

Download

Firmware User Manual, Z8F80177275 17 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

3 Programming model

1. Start the secure software download by calling user_secure_download_start with the key_id, size =1, and
the first 32 bytes of encrypted data

2. Call the user_secure_download_update function with page_index = 0 along with the next 128 bytes of
encrypted data

3. Call the user_secure_download_update function with page_index = 1 along with the last 128 bytes of
encrypted data

4, Finish the secure software download with user_secure_download_finish

5. Start the verification by calling the user_crypto_aes_cmac_verify_start function with the same key_id

6. Call the user_crypto_aes_cmac_verify_update function with the first 128 bytes of decrypted data

7. Call the user_crypto_aes_cmac_verify_update function with the second 128 bytes of decrypted data

8. Finish the verification by calling user_crypto_aes_cmac_verify_finish with the CMAC signature from the
preparation step 2

3.3 Debug interface

After the BootROM firmware has initialized the device, the debug support mode is available for the Serial Wire
Debug (SWD) interface. It supports the following features:

« Regular Arm® Cortex®-M3 debug features
+ Firmware API calls supported by the utility functions and the cryptographic library

The BootROM firmware then hands over the execution to the user application which can then wait for a
debugger to establish a proper SWD connection. This so-called wait-for-debug is delivered with the SDK and is
used to establish a SWD connection before the user code starts executing. Otherwise, the connection will be
established while the user application is already running which could prevent debugging of the start of the user
application.

All debugger features are restricted to user code and user data. Attempts to access protected regions of the
address space are ignored and have no effect. Restricted address spaces are for example the key storage, the
Secured Software Container, and the cryptographic library.

Firmware User Manual, Z8F80177275 18 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4 APl documentation

4.1 BSL commands

All BSL commands available are listed below, sorted into their respective NVM protection group.

The NVM protection group is checked before a BSL command is executed. An error is returned upon when an
access violation occurs.

NVM protection group definitions:

+ Group 1: Forthese commands, any protection is ignored.

« Group 2: These commands are blocked when NVM protection is active on the target segment.
« Group 3: These commands are blocked when NVM protection is active on any segment.

Note: "NVM protection" can be read or write protection.

100TP pages are considered part of a code segment. Write or read access to 100TP pages via BSL requires write
or read protection, respectively validation on the code segment.

Table 7 NVM protection check for BSL commands

NVM protection group BSL command

Group 1 Cmd 0x86 Memory execute

Protection ignored Cmd 0x98 NVM permanent protection clear

Cmd 0x0C NVM verify
Cmd 0x93 BSL baud rate set
Cmd 0x92 Device reset

Group 2 Cmd 0x89 NVM permanent protection set
Protection on target Cmd 0x05 Memory write (NVM, PSRAM)
segment Cmd 0x87 Memory read (NVM, PSRAM)

Cmd 0x88 NVM erase (page, sector)
Cmd 0xOD NVM 100TP write

Cmd Ox8E NVM 100TP read

Cmd 0x97 NVM 100TP erase

Group 3 Cmd 0x88 NVM erase (mass)
Protection on any segment | Cmd 0x99 UBSL size set
Cmd 0x9C UBSL privilege set

Firmware User Manual, Z8F80177275 19 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.1.1 Cmd 0x86 Memory execute

The device provides a BSL command to execute code from PSRAM in user mode.

Table 8 Cmd 0x86 command frame

0 1 2 3 4

Message type Address byte #0 Address byte #1 Address byte #2 Target
(MSB) (LSB)

Table 9 "Cmd 0x86 - Memory execute" command frame parameter definition

Field Description

Message type Memory execute command. Always set to 0x86.

Address byte #0 (MSB) 24-bit memory address offset, pointing to the vector table address.

Address byte #1 The offset is based on the respective memory base address.
Address byte #2 (LSB)
Target 0x10 (SRAM)

SRAM base address: 0x18000000

This BSL command rejects the operation if the provided vector address if out of range.
When targeting SRAM, the valid range is within PSRAM.

This BSL command performs clean-up before executing:

+ Deinitializing the media configuration

+ Clearing the timer

+ Clearing the interrupt source, interrupt status, and NMI status

+ Remapping the user vector table

Note: The command does not switch the system clock. Therefore, the target code will be executed
with HPCLK.

Note: The command does not re-enable FS_WDT. This means that the device stays in the fail-safe state and
the motor cannot run.

This BSL command executes the reset handler in the vector table. It rejects the operation and reports an error if
the vector address is not 32-word aligned.

Firmware User Manual, Z8F80177275 20 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.1.2 Cmd 0x98 NVM permanent protection clear
The device provides a BSL command to clear the protection of individual NVM segments..
Table 10 Cmd 0x98 command frame
0 1 2 3 4
Message type Passbyte #3 (MSB) | Passbyte #2 Passbyte #1 Passbyte #0 (LSB)
Table 11 "Cmd 0x98 - NVM permanent protection clear" command frame parameter definition
Field Description
Message type NVM permanent protection clear command. Always set to 0x98.
Passbyte #3 (MSB) Passphrase (passbyte[3:0]) options:
Passbyte #2 + UBSL segment passphrase: 0xBBXX5555
Passbyte #1 + Code segment passphrase: 0xCCXX5555
+ Datasegment passphrase: 0xDDXX5555
Passbyte #0 (LSB)

"XX" is ignored. Whether the command erases the segment does not depend on the
value supplied here but on the preinstalled passphrase.

If the provided passphrase is invalid, the command rejects the operation and reports an error.

The command evaluates the preinstalled passphrase.

If the preinstalled passphrase does not contain an erase flag, the command clears the permanent protection of
the target segment and its lower-privileged segments.

If the preinstalled passphrase does contain an erase flag, the command clears the permanent protection of the
target segment and its lower-privileged segments and erases them. In this case, if the target segment is an UBSL
segment, the BSL privilege setting is reset as well. Furthermore, if the target segment is an UBSL or UCODE
segment, the security keys (except default key) are erased as well.

When the permanent protection is cleared both read- and write-protection are immediately removed from the
segments.

Firmware User Manual, Z8F80177275 21 Rev. 1.0
2023-05-16

MOTIX™ TLE989x/TLE988x
Firmware User Manual

afineon

4 APl documentation

4.1.3 Cmd 0x0C NVM verify

The device provides a BSL command to check the integrity of the flash memory.

Table 12 Cmd 0x0C command frame

0 1 2 3 4 5 6 7 8

Message Address |Address |Address |Target Number of | Number of | Checksum | Checksum

type byte #0 byte #1 byte #2 pages byte | pages byte | byte #0 byte #1
(MSB) (LSB) #0 (MSB) |#1(LSB) | (MSB) (LSB)

Table 13 "Cmd 0x0C - NVM verify" command frame parameter definition

Field Description

Message type NVM verify command. Always set to 0x0C.

Address byte #0 (MSB) 24-bit memory address offset from where to start NVM data verification.

Address byte #1 The offset starts counting from the respective memory start address.

Address byte #2 (LSB) NVM data get verified against incrementing memory addresses.

Target FLASHO: 0x00, FLASH1: 0x01.

Number of pages, byte #0
(MSB)

16-bit number indicating the number of pages to be verified. The number must not
exceed the number of NVM pages available in linear regions.

Number of pages, byte #1
(LSB)

Checksum byte #0 (MSB)
Checksum byte #0 (MSB)

FLASHO base address: 0x11000000.
FLASH1 base address: 0x12002000.
The command is executed regardless of the NVM protection status.

User-provided 16-bit reference checksum.

The command will not be executed if targeted NVM range exceeds the overall linear NVM size.

Firmware User Manual, Z8F80177275 22 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.1.4 Cmd 0x93 BSL baud rate set

The device provides a BSL command to change the BSL baud rate (for the CAN interface) in the current BSL
session.

Table 14 Cmd 0x93 command frame
0 1 2
Message type Baud rate option Reserved
Table 15 "Cmd 0x93 - BSL baud rate set" command frame parameter definition
Field Description
Message Type Get chip ID command. Always set to 0x93.
Baud rate options Baud rate options:
0x00: 500 kBd
0x01: 1 MBd
0x02: 1.25 MBd

The new baud rate takes effect immediately after the response has been sent back to the host. The response is
still using the old baud rate.

Firmware User Manual, Z8F80177275 23 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.1.5 Cmd 0x92 Device reset
This device provides a BSL command to reset the device. Executing this command makes the device exit any
Default BSL communications and reboot. No response message is sent.

When the command executes successfully, it does not send back a SUCCESS response. Instead, it performs a
cold reset.

The reset is triggered by re-enabling FS_WDT. When a WDT self-test is performed, the microcontroller is kept in
reset during the test.

If the user wants to execute user application code after reset, the user needs to set a proper NAC value (for
example, NAC=0x0) to avoid re-entering into BSL communications.

Table 16 Cmd 0x92 command frame

1

Message type

Table 17 "Cmd 0x92 - Device reset" command frame parameter definition

Field Description

Message type Device reset command. Always set to 0x92.

Firmware User Manual, Z8F80177275 24 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.1.6 Cmd 0x89 NVM permanent protection set

The device provides a BSL command to set permanent protection on individual NVM segments.

Table 18 Cmd 0x89 command frame

0 1 2 3 4

Message type Passbyte #3 (MSB) | Passbyte #2 Passbyte #1 Passbyte #0 (LSB)
Table 19 "Cmd 0x89 - NVM permanent protection set" command frame parameter definition
Field Description

Message type NVM permanent protection set command. Always set to 0x89.

Passbyte #3 (MSB) Passphrase (passbyte[3:0]) options:

Passbyte #2 « UBSL segment passphrase without erase flag: 0xBB005555

Passbyte #1 + UBSL segment passphrase with erase flag: 0xBBFF5555

Passbyte #0 (LSB) + Code segment passphrase without erase flag: 0xCC005555

+ Code segment passphrase with erase flag: O0xCCFF5555
+ Datasegment passphrase without erase flag: 0xDD005555
+ Data segment passphrase with erase flag: OxDDFF5555

Note: for erase flag usage see also Cmd 0x98, no erase action here.

The BSL command to set permanent NVM protection is rejected if the protection of the segment with higher
privileges is not set.

If the specified NVM protection passphrase is valid, the command installs the passphrase into the device to set
permanent protection on the target segment.

When the permanent protection is set, the segment is immediately both read- and write-protected.

Important note:
Whether the protection passphrase includes the erase flag influences the scope of the FAR analysis.

If the protection passphrase with the erase flag is installed, clearing the permanent protection erases the
affected segments. FAR analyses of user code flash failures (for example, ECC error, mapping error) is not
possible.

If a protection passphrase without the erase flag is installed, clearing the permanent protection leaves the user
code in place. FAR analyses of user code flash failures are possible.

Firmware User Manual, Z8F80177275 25 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.1.7 Cmd 0x05 Memory write

The device provides a Default BSL command to write to NVM and RAM.

Table 20 Cmd 0x05 command frame

0 1 2 3 4 5..132

Message type Address byte #0 |Address byte #1 | Address byte #2 | Target Data
(MSB) (LSB)

Table 21 "Cmd 0x05 - Memory write" command frame parameter definition

Field Description

Message type Memory write command. Always set to 0x05.

Address byte #0(MSB) 24-bit memory address offset where to start storing the download data.

Address byte #1 The offset starts counting from the respective memory base address.

Address byte #2(LSB) Data gets written at incrementing memory addresses.

Target FLASHO: 0x00, FLASH1: 0x01, SRAM: 0x10.

Data 8-bit data bytes to be written, minimum size 1 byte, maximum size 128 bytes.
Checksum Checksum from length byte of the media frame to the end of data, excluding the

checksum byte.

The BSL command to write to an NVM segment is blocked if a protection is set on the target NVM segment.
The BSL command to write to PSRAM is blocked if a protection is set on a code segment.
Writing to DSRAM is possible regardless of the protection settings.

This command does not support writing across page boundaries. It rejects the page write operation if the offset
is out of range or the offset plus length of the data is out of range. It returns an error code in the response
message.

Memory write supports partial non-page-aligned writing, preserving the page data not passed as an input.
Memory write supports writing a minimum of 1 byte and a maximum of 128 bytes.
The command rejects the operation and reports an error if asked to access secure RAM.

Firmware User Manual, Z8F80177275 26 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.1.8 Cmd 0x87 Memory read

The device provides a BSL command to read NVM and RAM.

Table 22 Cmd 0x87 command frame

0 1 2 3 4 5 6

Message type |Address byte |Address byte |Addressbyte |Target Count Reserved
#0 (MSB) #1 #2 (LSB)

Table 23 "Cmd 0x87 - Memory read" command frame parameter definition

Field Description

Message type Memory read command. Always set to 0x87.

Address byte #0(MSB) 24-bit memory address offset where to start reading data.

Address byte #1 The offset starts counting from the respective memory start address.

Address byte #2(LSB) Data gets read at incrementing memory addresses.

Target FLASHO: 0x00, FLASH1: 0x01, SRAM: 0x10, CFSO: 0x20.

Count Number of 8-bit data bytes to be read, minimum size 1 byte, maximum size 128

bytes.
FLASHO base address: 0x11000000.

FLASH1 base address: 0x12002000.
SRAM base address: 0x18000000.

This BSL command supports reading of up to 128 bytes of data.

This BSL command rejects the operation if the target address if out of range.

The BSL command to read memory does not support reading across page boundaries.
The command rejects the operation if it attempts to read a secure RAM location.
Reading of PSRAM is rejected if the NVM code segment is protected.

Reading of DSRAM is allowed regardless of any segment protection.

Reading of flash is rejected if the target NVM segment is protected.

The command supports read access to CFS0 in test mode. It rejects the operation and reports an error if any
segment is read-protected.

Firmware User Manual, Z8F80177275 27 Rev. 1.0
2023-05-16

MOTIX™ TLE989x/TLE988x
Firmware User Manual

4 APl documentation

4.1.9

Cmd 0x88 NVM erase

The device provides a BSL command to erase an NVM page, NVM sector, or NVM module.

infineon

Table 24 Cmd 0x88 command frame

0 1 2 3 4 5 6

Message type |Address byte |Addressbyte |Addressbyte |Target Erase type Reserved
#0 (MSB) #1 #2 (LSB)

Table 25 "Cmd 0x88 - NVM erase'" Command frame parameter definition

Field Description

Message type NVM erase command. Always set to 0x88.

Address byte #0 (MSB) 24-bit NVM address offset for page, sector, or module to erase.

Address byte #1 The offset is based on the NVM start address.

Address byte #2 (LSB)

Target

FLASHO: 0x00, FLASH1: 0x01

Erase type

Supported erase type field values:
0 - NVM page erase

1- NVM sector erase

2 - NVM module mass erase

FLASHO base address: 0x11000000.
FLASH1 base address: 0x12002000.
When erasing a page or sector, the BSL command rejects the operation if the target address is out of range.

When erasing a page or sector, the BSL command rejects the operation if the target NVM segment is protected.

When erasing a module, the BSL command rejects the operation if any segment in the module is protected.

Firmware User Manual, Z8F80177275 28

Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.1.10 Cmd 0x0OD NVM 100TP write

The device provide a BSL command to write 100TP pages.

Table 26 Cmd 0x0D command frame

0 1 2 3 4 5..128
Message type Page index Page offset Reserved Counter value Data
Table 27 "Cmd 0x0D - NVM 100TP write" command frame parameter definition

Field Description

Message type NVM 100TP write command. Always set to 0x0D.

Page index 100TP page selector, valid range 0..7.

Page offset Offset within selected page.

Counter value New 100TP counter value.

Data 8-bit data bytes to be written, minimum size 1 byte, maximum size 124 bytes.

The command supports setting the page write counter value. If the specified counter value is larger than the
current counter value, and is smaller than or equal to 100, the specified counter value is written. If the specified
counter value is larger than 100, it is truncated to 100. If the specified counter value is smaller than or equal

to the current value, the current counter value is incremented by one.

The command supports partial page writing operations, with the selected byte offset and number of bytes.
The command does not support writing across page boundaries.

The command rejects the operation if the page write counter value already has reached 100. (The initial counter
value is OxFF. After the first write, the counter value is incremented to 1, after the second write to 2, ..., after the
100th write, the counter value is incremented to 100.)

Firmware User Manual, Z8F80177275 29 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.1.11 Cmd Ox8E NVM 100TP read
The device provides a BSL command to read 100TP pages.

Table 28 Cmd 0x8E command frame

0 1 2 3 4

Message type Page index Page offset Reserved Count

Table 29 "Cmd Ox8E - NVM 100TP read" command frame parameter definition

Field Description

Message type NVM 100TP read command. Always set to Ox8E.

Page index 100TP page selector, valid range 0..7.

Page offset Offset within selected page, valid range 0..127.

Count Number of 8-bit data bytes to be read, minimum size 1 byte, maximum size 128
bytes.

The command does not support reading across page boundaries.
The command performs an ECC2 check on the target page and reports an error when that check fails.

Firmware User Manual, Z8F80177275 30 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.1.12 Cmd 0x97 NVM 100TP erase

The device provides a BSL command to erase 100TP pages.

Table 30 Cmd 0x97 command frame

0 1 2

Message type Page index Reserved

Table 31 "Cmd 0x97 - NVM 100TP erase" command frame parameter definition
Field Description

Message type NVM 100TP erase command. Always set to 0x97.

Page index 100TP page selector, valid range 0..7.

The command preserves the 100TP counter value.
The command sets the counter value to 95 if the page contains an ECC2DATA error.

The command invalidates the 100TP page by writing an invalid checksum to ensure that the erased page is not
used. Writing to the erased 100TP page will make it valid again.

Firmware User Manual, Z8F80177275 31 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4,1.13 Cmd 0x99 UBSL size set
The device provides a BSL command to write the size of the USBL into the configuration sector.
Table 32 Cmd 0x99 command frame
0 1 2
Message type UBSL size Reserved
Table 33 "Cmd 0x99 - UBSL size set" command frame parameter definition
Field Description
Message type UBSL size set command. Always set to 0x99.
UBSL size Possible UBSL size options:

0x00: 4 kB

0x01: 8 kB

0x02: 12 kB

0x03: 16 kB

0x04: 20 kB

0x05: 24 kB

0x06: 28 kB (default)

0x07:32 kB

The command can be executed only once. It rejects the operation and reports an error if it has been executed
before or if the UBSL location contains an ECC2 error.

The command rejects the operation if any NVM segment is protected.
The command rejects the operation if the UBSL size parameter is invalid.

Note: If this command is called, the user must also adapt the size of UBSL area settings in the used tool
chain, for example in the Linker file.

Firmware User Manual, Z8F80177275 32 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.1.14 Cmd 0x9C UBSL privilege set

The device provides a BSL command to change the UBSL privilege settings in the configuration sector. Calling
this command sets the default privilege level (4) of the UBSL to be equal to that of UCODE (3). The privilege level
of the UBSL cannot be changed back later.

Table 34 Cmd 0x9C command frame

0

Message type

Table 35 "Cmd 0x9C - UBSL privilege set" command frame parameter definition
Field Description

Message type UBSL privilege set command. Always set to 0x9C.

The command can be executed only once. It rejects the operation if it has been executed before or if the UBSL
location contains an ECC2 error.

The command rejects the operation if any NVM segment is protected.

Firmware User Manual, Z8F80177275 33 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x In fl neon

Firmware User Manual

4 APl documentation

4.1.15 Resp 0x80 Data response

Some BSL commands request data from the device. These messages expect a data response message.

Table 36 Cmd 0x80 response message frame

0 1..128

Message type Data

Table 37 ""Resp 0x80 - Data response' response frame parameter definition

Field Description

Message type Data response, always set to 0x80.

Data The requested data, minimum size 1 byte, maximum size 128 bytes.
Firmware User Manual, Z8F80177275 34 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.1.16 Resp 0x81 Acknowledge response

The device sends back an acknowledge response message if the command does not request any data or if the
BSL command fails.

Table 38 Cmd 0x81 response message frame

0 1 2

Message type Response code byte #0 (MSB) Response code byte #1 (LSB)
Table 39 ""Resp 0x81 - Acknowledge response' response frame parameter definition

Field Description

Message type Acknowledge response. Always set to 0x81.

Response code Signed 16-bit command response code. The value is set to zero if the requested command
byte #0 (MSB) was executed successfully. Otherwise, the response code is an error code.

Response code

byte #1 (LSB)

Firmware User Manual, Z8F80177275 35 Rev. 1.0

2023-05-16

MOTIX™ TLE989x/TLE988x
Firmware User Manual

infineon

4 APl documentation

4,2 User API routines

These routines are exposed by the BootROM to the customer user mode software.

User API routines support flash access and protection configuration. Security variants also support

cryptographic operations.

Table 40

User API routines function overview

Name

Description

user_nvm_service_algorithm

This user API function runs the service algorithm on a mapped
sector, attempting to repair faulty pages or double mappings.

user_nvm_mapram_recover

This user API function attempts to reconstruct map RAM by
extracting mapping information from good pages.

user_nvm_mapram_init

This user API function triggers the map RAM initialization on the
target mapped sector.

user_cid_get

This user API function gets the customer identification number.

user_nvm_ecc_check

This user API function checks for single and double ECC errors on
the target flash.

user_nvm_ecc_addr_get

This user API function returns the address of a double ECC event
that has occurred in the target flash.

user_nvm_100tp_read

This user API function reads data from a specified 100TP page.

user_nvm_100tp_write

This user APl function writes data to a specified 100TP page.

user_nvm_100tp_erase

This user API function erases a data field of the specified 100TP
page.

user_nvm_config_get

This user API function returns the size of each NVM segment.

user_nvm_temp_protect_get

This user API function gets the current protection status of a
specified NVM segment.

user_nvm_udata_temp_protect_set

This user API function temporarily sets the write protection of the
UDATA segment.

user_nvm_ucode_temp_protect_set

This user API function temporarily sets the write protection of the
UCODE segment.

user_nvm_ubsl_temp_protect_set

This user API function temporarily sets the write protection of the
UBSL segment.

user_nvm_udata_temp_protect_clear

This user API function temporarily clears the write protection of
the UDATA segment.

user_nvm_ucode_temp_protect_clear

This user API function temporarily clears the write protection of
the UCODE segment.

user_nvm_ubsl_temp_protect_clear

This user API function temporarily clears the write protection of
the UBSL segment.

user_nvm_page_erase

This user API function erases a specified flash page.

user_nvm_sector_erase

This user API function erases a specified flash sector.

user_nvm_page_write

This user API function writes a number of bytes from the source to
the specified flash address.

(table continues...)

Firmware User Manual, Z8F80177275

36 Rev. 1.0
2023-05-16

MOTIX™ TLE989x/TLE988x
Firmware User Manual

infineon

4 APl documentation

Table 40 (continued) User API routines function overview

Name

Description

user_ram_mbist

This user API function performs a MBIST on the specified SRAM
range.

user_crypto_aes_cmac_generate_start

This user API function initializes a CMAC generation.

user_crypto_aes_cmac_generate_update

This user API function updates the ongoing CMAC generation.

user_crypto_aes_cmac_generate_finish

This user API function finalizes the ongoing CMAC generation.

user_crypto_aes_cmac_verify_start

This user API function initializes a CMAC verification operation.

user_crypto_aes_cmac_verify_update

This user APl function updates the ongoing CMAC verification.

user_crypto_aes_cmac_verify_finish

This user API function finalizes the ongoing CMAC verification.

user_crypto_aes_start

This user API function initializes an AES operation.

user_crypto_aes_update

This user API function updates the ongoing AES operation.

user_crypto_aes_finish

This user API function finalizes the ongoing AES operation.

user_crypto_key_write

This user API function writes a cryptographic key to the target key
slot.

user_crypto_key_erase

This user APl function erases a cryptographic key.

user_crypto_key_verify

This user API function verifies and optionally repairs an existing
cryptographic key.

user_nvm_isr_handler

The NVM read-while-write interrupt handler.

user_secure_download_start

This user API function initializes the secure container and starts
the secure download process.

user_secure_download_update

This user API function continues the secure download process.

user_secure_download_finish

This user API function finalizes the secure download process.

user_cache_operation

This user APl function provides an alternative to writing to cache
registers in addition to direct register access.

user_secure_dualboot

This user API function configures and enables the secondary UBSL
image.

user_ubsl_size_restore

This user API function is used to restore the UBSL size in case of a
Stop mode reset.

user_nvm_perm_protect_set

This user API function sets permanent protection on NVM
segments.

Firmware User Manual, Z8F80177275

37 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4,2.1 user_nvm_service_algorithm

Description

This user API function runs the service algorithm on a mapped sector, attempting to repair faulty pages or
double mappings.

Prototype

int32_t user_nvm_service_algorithm (
uint32_t sector_address

)

Parameters

Data type Name Description Dir

uint32_t sector_address | Address of the sector on which to run the service -
algorithm (SA).

Return values

Data type Description

int32_t Function execution status.
#ERR_LOG_SUCCESS
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_SEGMENT_PROTECTED
#ERR_LOG_CODE_MEM_ADDR_RANGE_INVALID
#ERR_LOG_CODE_SA_UNRECOVERABLE

Stack Usage

The execution of this API function has a maximum stack usage of 16 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 38 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.2 user_nvm_mapram_recover

Description

This user APl function attempts to reconstruct map RAM by extracting mapping information from good pages.

It can be called by the user if the NVM service algorithm (SA) fails to repair a corrupted data map sector.
Requests to initialize the map RAM for an unavailable sector or for a linearly mapped sector are ignored. Pages
that are mapped two or more times are counted as faulty pages.

Prototype

int32_t user_nvm_mapram_recover (
uint32_t sector_address

)

Parameters

Data type Name Description Dir

uint32_t sector_address | Address of the sector from which to recover mapping -
information.

Return values

Data type Description

int32_t Function execution status. Non-negative after successful execution, indicating the

amount of good mapped pages that were found.
#ERR_LOG_CODE_MEM_ADDR_RANGE_INVALID

#ERR_LOG_CODE_NVM_ECC2_MAPRAM_ERROR
#ERR_LOG_CODE_SEMAPHORE_RESERVED

Stack Usage

The execution of this API function has a maximum stack usage of 216 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 39 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4,2.3 user_nvm_mapram_init

Description

This user API function triggers the map RAM initialization on the target mapped sector.

Prototype

int32_t user_nvm_mapram_init (
uint32_t sector_address

)

Parameters
Data type Name Description Dir
uint32_t sector_address | Sector address to perform operation. -

Return values

Data type Description

int32_t Function execution status.

#ERR_LOG_SUCCESS
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_MEM_ADDR_RANGE_INVALID
#ERR_LOG_CODE_MAPRAM_INIT_PAGE_FAIL
#ERR_LOG_CODE_MAPRAM_INIT_DM_PAGE_FAIL

Stack Usage

The execution of this API function has a maximum stack usage of 216 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 40 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.4 user_cid_get

Description

This user API function gets the customer identification number. It contains information about the variant and
design step.

Prototype

int32_t user_cid_get (
uint32_t * customer_id

)

Parameters
Data type Name Description Dir
uint32_t* customer_id Pointer where to store the customer identification -

number (CID) read from the device configuration sector.
The address indicated by the pointer must be located in

RAM.
Return values
Data type Description
int32_t Function execution status.

#ERR_LOG_SUCCESS
#ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID

CustomerID

The customer ID consists of four bytes with a specific meaning (see Table 41).

Table 41 Customer ID encoding
Byte O Byte 1 Byte 2 Byte 3
Grade Design Step Package, Variant Family
Grade 0 20y AA-Step AA, 48-pin XTH TLE988x 064
Grade 1 00y AB-Step ABy 64-pin XBy TLE989x 07y
AK-Step BA{ TLE98x1 1Xy
TLE98x3 3XH
Note: An 'X' within a hexadecimal value represents a "dont'care"” position.
Stack Usage

The execution of this API function has a maximum stack usage of 12 bytes.

Firmware User Manual, Z8F80177275 41 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4,2.5 user_nvm_ecc_check

Description

This user API function checks for single and double ECC errors on the target flash.

AlL ECC error flags are cleared before the check starts to prevent the reading of previously set error flags. Upon
exit, the function clears the current ECC status.

Prototype

int32_t user_nvm_ecc_check (
uint32_t flash
)

Parameters
Data type Name Description Dir
uint32_t flash Target flash (see Constant reference). -

Return values

Data type Description

int32_t Function execution status.

#ERR_LOG_SUCCESS: No single or double ECC events have occurred.
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_ECC1READ_ERROR
#ERR_LOG_CODE_ECC2READ_ERROR
#ERR_LOG_CODE_PARAM_INVALID

Stack Usage

The execution of this API function has a maximum stack usage of 96 bytes.

Remarks

This routine does not provide the addresses of the ECC errors. In case an ECC error is detected, call the
user_nvm_ecc_addr_get routine to retrieve the failure address.

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 42 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.6 user_nvm_ecc_addr_get

Description

This user API function returns the address of a double ECC event that has occurred in the target flash.
The value of pNVM_Addr can be one of below patterns:

o OX1IXXXXXX ECC2 failure in FLASHO area, it indicates the absolute memory address.

o Ox12XXXXXX ECC2 failure in FLASH1 area, it indicates the absolute memory address.

+ 0x100000XY ECC2in 100TP pages, where X =100TP page number, Y = block offset inside the page (block
granularity: 8 bytes).
+ 0x01000000 ECC2 in internal NVM CS area, not recoverable.

Prototype

int32_t user_nvm_ecc_addr_get (
uint32_t flash
uint32_t * pNVM_Addr

)

Parameters

Data type Name Description Dir
uint32_t flash Target flash (see Constant reference). -
uint32_t* pNVM_Addr Pointing to ECC2 failure address. -

Return values

Data type Description

int32_t Function execution status.

#ERR_LOG_SUCCESS: No ECC2 event or event address has been obtained successfully.
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID
#ERR_LOG_CODE_PARAM_INVALID

Stack Usage

The execution of this API function has a maximum stack usage of 52 bytes.

Remarks

When the function exits, it clears the current ECC2 flag.
Any other NVM operations also clear the ECC2 flag.
In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 43 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4,2.7 user_nvm_100tp_read

Description

This user API function reads data from a specified 100TP page.
This function can read a maximum of 128 bytes (including the counter field and checksum field).

Prototype

int32_t user_nvm_100tp_read (
uint32_t npage
user_100tp_read_t * params

)

Parameters

Data type Name Description Dir

uint32_t npage The index of the page from which to read. Valid range: 0 |-
to7.

user_100tp_read_t * params 100TP read parameters. -

Return values

Data type Description

int32_t Function execution status.

#ERR_LOG_SUCCESS
#ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_PARAM_INVALID
#ERR_LOG_CODE_100TP_PAGE_INVALID
#ERR_LOG_CODE_ECC2READ_ERROR

Stack Usage

The execution of this API function has a maximum stack usage of 48 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 44 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.8 user_nvm_100tp_write

Description

This user API function writes data to a specified 100TP page.

The function can write up to 124 bytes in a data field each time. The function supports maximum 100 times
write operation. The function performs an implicit update of the page checksum.

Prototype

int32_t user_nvm_100tp_write (
uint32_t npage
user_100tp_write_t * params

)

Parameters
Data type Name Description Dir
uint32_t npage The index of the page to which to write. Valid range: 0 to | -
T.
user_100tp_write_t * params 100TP write parameters. -
Return values
Data type Description
int32_t Function execution status.

#ERR_LOG_SUCCESS
#ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_PARAM_INVALID
#ERR_LOG_CODE_100TP_PAGE_INVALID
#ERR_LOG_CODE_SEGMENT_PROTECTED
#ERR_LOG_CODE_ECC2READ_ERROR
#ERR_LOG_CODE_100TP_WRITE_COUNT_EXCEEDED
#ERR_LOG_CODE_ACCESS_AB_MODE_ERROR
#ERR_LOG_CODE_NVM_ECC2_DATA_ERROR

Stack Usage

The execution of this API function has a maximum stack usage of 88 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 45 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.9 user_nvm_100tp_erase

Description

This user APl function erases the specified 100TP page. The write counter field is preserved.

The function should be called if the 100TP page is corrupted. Upon successful execution, the page is initialized
with an invalid checksum.

Prototype

int32_t user_nvm_100tp_erase (
uint32_t npage
)

Parameters
Data type Name Description Dir
uint32_t npage The index of the 100TP page to erase. Valid range: 0to |-
1.
Return values
Data type Description
int32_t Function execution status.

#ERR_LOG_SUCCESS
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_100TP_PAGE_INVALID
#ERR_LOG_CODE_SEGMENT_PROTECTED
#ERR_LOG_CODE_ACCESS_AB_MODE_ERROR
#ERR_LOG_CODE_NVM_VER_ERROR

Stack Usage

The execution of this API function has a maximum stack usage of 72 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 46 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.10 user_nvm_config_get

Description
This user API function returns the size of the UBSL, UCODE, and UDATA NVM segments.

Prototype

int32_t user_nvm_config get (
uint32_t * ubsl_nvm_size
uint32_t * code_nvm_size
uint32_t * data_nvm_size

)

Parameters

Data type Name Description Dir

uint32_t* ubsl_nvm_size |Pointer to where to store the retrieved NVM UBSL -
segment size.

uint32_t* code_nvm_size | Pointer to where to store the retrieved NVM UCODE -
segment size.

uint32_t* data_nvm_size | Pointer to where to store the retrieved NVM UDATA -
segment size.

Return values

Data type Description

int32_t Function execution status.
#ERR_LOG_SUCCESS
#ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID

Stack Usage

The execution of this APl function has a maximum stack usage of 36 bytes.

Firmware User Manual, Z8F80177275 47 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.11 user_nvm_temp_protect_get

Description

This user API function gets the current protection status of the specified NVM segment.

Prototype

uint32_t user_nvm_temp_protect_get (
user_nvm_segment_t segment

)
Parameters
Data type Name Description Dir
user_nvm_segment_t segment The NVM segment for which to report the current -
protection status.

Return values

Data type Description
uint32_t The current protection status of the specified NVM segment.
Stack Usage

The execution of this API function has a maximum stack usage of 16 bytes.

Firmware User Manual, Z8F80177275 48 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.12 user_nvm_udata_temp_protect_set

Description

This user APl function temporarily sets the write protection of the User data NVM segment until the protection
is removed by calling user_nvm_udata_temp_protect_clear.

Prototype

int32_t user_nvm_udata_temp protect_set (
uint32_t passphrase

)

Parameters

Data type Name Description Dir

uint32_t passphrase The passphrase must be -
NVM_SEG_PROT_DATA_NO_ERASE.

Return values

Data type Description

int32_t Function execution status.

#ERR_LOG_SUCCESS
#ERR_LOG_CODE_USER_PROTECT_WRONG_PASSWORD
#ERR_LOG_CODE_SEMAPHORE_RESERVED

Stack Usage

The execution of this APl function has a maximum stack usage of 16 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 49 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.13 user_nvm_ucode_temp_protect_set

Description

This user APl function temporarily sets the write protection of the User code NVM segment until the protection
is removed by calling user_nvm_ucode_temp_protect_clear.

Prototype

int32_t user_nvm_ucode_temp protect_set (
uint32_t passphrase

)

Parameters

Data type Name Description Dir

uint32_t passphrase The passphrase must be -
NVM_SEG_PROT_CODE_NO_ERASE.

Return values

Data type Description

int32_t Function execution status.

#ERR_LOG_SUCCESS
#ERR_LOG_CODE_USER_PROTECT_WRONG_PASSWORD
#ERR_LOG_CODE_SEMAPHORE_RESERVED

Stack Usage

The execution of this APl function has a maximum stack usage of 16 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 50 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4,2.14 user_nvm_ubsl_temp_protect_set

Description

This user APl function temporarily sets the write protection of the User BSL NVM segment until the protection is
removed by calling user_nvm_ubsl_temp_protect_clear.

Prototype

int32_t user_nvm_ubsl temp protect_set (
uint32_t passphrase

)

Parameters

Data type Name Description Dir

uint32_t passphrase The passphrase must be -
NVM_SEG_PROT_UBSL_NO_ERASE.

Return values

Data type Description

int32_t Function execution status.

#ERR_LOG_SUCCESS,
#ERR_LOG_CODE_USER_PROTECT_WRONG_PASSWORD
#ERR_LOG_CODE_SEMAPHORE_RESERVED

Stack Usage

The execution of this APl function has a maximum stack usage of 16 bytes.

Remarks

This functional is callable only from UBSL segment.
In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 51 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4,2.15 user_nvm_udata_temp_protect_clear

Description

This user APl function temporarily clears the write protection of the User data NVM segment after enabling the
protection by calling user_nvm_udata_temp_protect_set.

Prototype

int32_t user_nvm_udata_temp protect_clear (
uint32_t passphrase

)

Parameters

Data type Name Description Dir

uint32_t passphrase The passphrase must be -
NVM_SEG_PROT_DATA_NO_ERASE.

Return values

Data type Description

int32_t Function execution status.

#ERR_LOG_SUCCESS
#ERR_LOG_CODE_USER_PROTECT_WRONG_PASSWORD
#ERR_LOG_CODE_SEMAPHORE_RESERVED

Stack Usage

The execution of this APl function has a maximum stack usage of 16 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 52 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.16 user_nvm_ucode_temp_protect_clear

Description

This user APl function temporarily clears the write protection of the User code NVM segment after enabling the
protection by calling user_nvm_ucode_temp_protect_set.

Prototype

int32_t user_nvm_ucode_temp protect_clear (
uint32_t passphrase

)

Parameters

Data type Name Description Dir

uint32_t passphrase The passphrase must be -
NVM_SEG_PROT_CODE_NO_ERASE.

Return values

Data type Description

int32_t Function execution status.

#ERR_LOG_SUCCESS
#ERR_LOG_CODE_USER_PROTECT_WRONG_PASSWORD
#ERR_LOG_CODE_SEMAPHORE_RESERVED

Stack Usage

The execution of this APl function has a maximum stack usage of 16 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 53 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4,2.17 user_nvm_ubsl_temp_protect_clear

Description

This user APl function temporarily clears the write protection of the User BSL NVM segment after enabling the
protection by calling user_nvm_ubsl|_temp_protect_set.

Prototype

int32_t user_nvm_ubsl temp protect_clear (
uint32_t passphrase

)

Parameters

Data type Name Description Dir

uint32_t passphrase The passphrase must be -
NVM_SEG_PROT_UBSL_NO_ERASE.

Return values

Data type Description

int32_t Function execution status.

#ERR_LOG_SUCCESS
#ERR_LOG_CODE_USER_PROTECT_WRONG_PASSWORD
#ERR_LOG_CODE_SEMAPHORE_RESERVED

Stack Usage

The execution of this APl function has a maximum stack usage of 16 bytes.

Remarks

This functional is callable only from UBSL segment.
In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 54 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.18 user_nvm_page_erase

Description

This user API function erases a specified flash page.

When asked to erase an unused (new) page in a mapped sector, the function does nothing and returns success.
When asked to erase a page in a linear sector, the function always performs the erase.

Prototype

int32_t user_nvm_page_erase (
uint32_t page_address
uint32_t options

)

Parameters

Data type Name Description Dir

uint32_t page_address |Address of the NVM page to erase. Non-aligned -
addresses are accepted.

uint32_t options Page erase options. Supported options: -

+ NVM_OPTIONS_NONE: Background read-while-
write (RWW) enabled.

+ NVM_OPTIONS_RWW_DISABLE: Background read-
while-write (RWW) disabled.

Return values

Data type Description

int32_t Function execution status.
#ERR_LOG_SUCCESS.

Stack Usage

The execution of this API function has a maximum stack usage of 152 bytes.

Execution Time

The execution time of this API function is composed by the time needed to execute the code and the time
needed by the flash operation. It further depends on the RWW setting. The timing behavior in case RWW is
enabled is depicted below.

Firmware User Manual, Z8F80177275 55 Rev. 1.0
2023-05-16

MOTIX™ TLE989x/TLE988x
Firmware User Manual

4 APl documentation

infineon

FLASH1
Execution

BootROM
Execution

Executed by CPU

Interrupt
Controller

FLASHO
Operation

User Code

User Code

User Code

'user_nvm_page_erase

A

A

return

A

return

A 4

user_nvm_isr_handler

A

I 4

start erase FSM

AMEMCTRL
Interrupt

I /

v
~1400
clocks

\'4

ter

\'4

~6650
clocks

I /

Figure 8 Erasing a mapped page with RWW enabled.

Remarks

The status of background read-while-write (RWW) is available in the NVM_OP_STS register within MEMCTRL. It
can be accessed by MEMCTRL->NVM_OP_STS.

The result of background read-while-write (RWW) is available in the NVM_OP_RESULT register within MEMCTRL.
It can be accessed by MEMCTRL->NVM_OP_RESULT. For the result encoding see Table 45.

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275

56

Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.19 user_nvim_sector_erase

Description

This user API function erases a specified flash sector.
For a mapped sector, upon successful sector erase, the map RAM is initialized and a new spare page is selected.

Prototype

int32_t user_nvm_sector_erase (
uint32_t sector_address
uint32_t options

)

Parameters

Data type Name Description Dir

uint32_t sector_address | Address of the NVM sector to erase. Non-aligned -
addresses are accepted.

uint32_t options Sector erase options. Supported options: -

+ NVM_OPTIONS_NONE: Background read-while-
write (RWW) enabled.

. NVM_OPTIONS_RWW_DISABLE: Background read-
while-write (RWW) disabled.

Return values

Data type Description

int32_t Function execution status.
#ERR_LOG_SUCCESS.

Stack Usage

The execution of this API function has a maximum stack usage of 152 bytes.

Execution Time

The execution time of this API function is composed by the time needed to execute the code and the time
needed by the flash operation. It further depends on the RWW setting. The timing behavior in case RWW is
enabled is depicted below.

Firmware User Manual, Z8F80177275 57 Rev. 1.0
2023-05-16

MOTIX™ TLE989x/TLE988x
Firmware User Manual

4 APl documentation

infineon

z FLAS.Hl User Code User Code User Code
O Execution
> A -
o A A Vt
32 'user_nvm_sector_erase return return
>
¢ | BootROM
| Execution
A -
A "t
user_nvm_isr_handler
Interrupt
Controller
A >t
start erase FSM MEMCTRL
2 Interrupt
FLASHO
Operation
>
t
v Vv Vv
~1300 ter ~18300
clocks clocks
Figure 9 Erasing a mapped sector with RWW enabled.
Remarks

The status of background read-while-write (RWW) is available in the NVM_OP_STS register within MEMCTRL. It
can be accessed by MEMCTRL->NVM_OP_STS.

The result of background read-while-write (RWW) is available in the NVM_OP_RESULT register within MEMCTRL.
It can be accessed by MEMCTRL->NVM_OP_RESULT. For the result encoding see Table 45.

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275

58

Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.,2.20 user_nvm_page_write

Description

This user API function writes a number of bytes to the specified flash address.

Prototype

int32_t user_nvm_page_write (
uint32_t page_address
user_nvm_page_write_t * params

)
Parameters
Data type Name Description Dir
uint32_t page_address | The address of the NVM page to which to write the data. |-
user_nvm_page_write_t* | params NVM write parameters. Supported parameter options: |-

+« NVM_OPTIONS_NONE: Corrective action disabled,
RWW enabled, failpage erase enabled

+ NVM_OPTIONS_CORR_ACT: Enables retrying the
write operation if the first write operation
verification failed. For EEPROM specific, it enables
disturb handling, which refreshes other pages in
the background for around every 1K write

+ NVM_OPTIONS_NO_FAILPAGE_ERASE: This option
applies only to mapped sectors. If it is specified,
the failed written page remains. If it is not
specified, the failed written page gets erased

+ NVM_OPTIONS_RWW_DISABLE: Background read-
while-write (RWW) disabled.

Return values

Data type Description

int32_t Function execution status.
#ERR_LOG_SUCCESS.

Stack Usage

The execution of this API function has a maximum stack usage of 200 bytes.

Execution Time

The execution time of this API function is composed by the time needed to execute the code and the time
needed by the flash operation. It further depends on the RWW setting and preconditions of the page to be
written. The different scenarios in case RWW is enabled are depicted below.

Firmware User Manual, Z8F80177275 59 Rev. 1.0
2023-05-16

MOTIX™ TLE989x/TLE988x
Firmware User Manual

4 APl documentation

infineon

z FLA§H1 User Code User Code User Code User Code
O Execution »
Ry A A A ”
2 user_nvm_page_write i return return return
=1 \
>3
g | BootROM
w Execution o
A A >
user_nvm_isr_handler user_nvm_isr_handler
Interrupt
Controller o
A A e
start write FSM MEMCTRL start erase FSM MEMCTRL
v Interrupt Interrupt
FLASHO
Operation
>
t
A4 A4 Vv \4 \4
~3800 ter ~12350 ter ~6750
clocks clocks clocks
Figure 10 Writing a mapped page with RWW enabled.
z FLAS.Hl User Code User Code User Code User Code
O Execution »
& A A A ”
'8 user_nvm_page_write return return return
= \ 4
=
@ | BootROM
W | Execution
»
A A "t
user_nvm_isr_handler user_nvm_isr_handler
Interrupt
Controller o
A A <
start write FSM MEMCTRL start erase FSM MEMCTRL
v Interrupt v Interrupt
FLASHO
Operation o
L
t
\4 Vv Vv Vv Vv
~3050 ter ~550 ter ~11950
clocks clocks clocks
Figure 11 Writing a programmed linear page with RWW enabled.
Firmware User Manual, Z8F80177275 60 Rev. 1.0

2023-05-16

MOTIX™ TLE989x/TLE988x
Firmware User Manual

4 APl documentation

infineon

z FLAS.Hl User Code User Code User Code
O Execution g
z A A o
2 Vuser_nvm_page_write return return
=}
€ | BootROM
W | Execution
A >
user_nvm_isr_handler
Interrupt
Controller
A =t
start write FSM MEMCTRL
Interrupt
FLASHO
Operation
>
t
v Vv Vv
~2900 ter ~11950
clocks clocks
Figure 12 Writing an erased linear page with RWW enabled.
Remarks

The status of background read-while-write (RWW) is available in the NVM_OP_STS register within MEMCTRL. It
can be accessed by MEMCTRL->NVM_OP_STS.

The result of background read-while-write (RWW) is available in the NVM_OP_RESULT register within MEMCTRL.
It can be accessed by MEMCTRL->NVM_OP_RESULT. For the result encoding see Table 45.

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275

61

Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4,2.21 user_ram_mbist

Description

This user APl function performs an MBIST on the specified SRAM range. The value for start_address has to be
smaller than end_address.

Prototype

int32_t user_ram_mbist (
uint32_t start_address
uint32_t end_address

)

Parameters
Data type Name Description Dir
uint32_t start_address | RAM memory address at which to start the MBIST test. |-
Highest valid address is 0x18000000 + device RAM size.
uint32_t end_address RAM memory address up to which to perform the -
MBIST test. Highest valid address is 0x18000000 +
device RAM size.

Return values

Data type Description

int32_t Function execution status.
#ERR_LOG_SUCCESS
#ERR_LOG_CODE_MBIST_RAM_RANGE_INVALID
#ERR_LOG_CODE_MBIST_FAILED

Stack Usage

The execution of this API function has a maximum stack usage of 456 bytes.

Remarks
The execution of MBIST changes the RAM content in the specified address range. Make sure that the user stack
does not get destroyed.

This function is not interruptible. Interrupts must be disabled before the call and only re-enabled after it has
finished.

Firmware User Manual, Z8F80177275 62 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.22 user_crypto_aes_cmac_generate_start

Description

This user API function initializes a CMAC generation.

Prototype

int32_t user_crypto_aes_cmac_generate_start (
uint32_t key_id
)

Parameters

Data type Name Description Dir

uint32_t key_id Key ID used for CMAC generation. Key ID range is 1 to -
12.

Return values

Data type Description

int32_t Function execution status.

#ERR_LOG_SUCCESS
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_PARAM_INVALID
#ERR_LOG_CODE_KEY_SLOT_CORRUPTED
#ERR_LOG_CODE_AES_UNSUPPORTED_ERROR
#ERR_LOG_CODE_AES_BUFFER_SMALL_ERROR
#ERR_LOG_CODE_AES_UNAVAILABLE_ERROR
#ERR_LOG_CODE_AES_ERROR

Stack Usage

The execution of this API function has a maximum stack usage of 116 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 63 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.23 user_crypto_aes_cmac_generate_update

Description

This user API function updates the ongoing CMAC generation.

Call user_crypto_aes_cmac_generate_start routine before the first update operation. The function can be
called multiple times.

Prototype

int32_t user_crypto_aes_cmac_generate_update (
user_crypto_inp_buf_t * buf
)

Parameters
Data type Name Description Dir
user_crypto_inp_buf_t* buf Input buffer for crypto operation. -

Return values

Data type Description

int32_t Function execution status.

#ERR_LOG_SUCCESS
#ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_AES_UNSUPPORTED_ERROR
#ERR_LOG_CODE_AES_BUFFER_SMALL_ERROR
#ERR_LOG_CODE_AES_UNAVAILABLE_ERROR
#ERR_LOG_CODE_AES_ERROR

Stack Usage

The execution of this API function has a maximum stack usage of 176 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 64 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.24 user_crypto_aes_cmac_generate_finish

Description

This user APl function finalizes the ongoing CMAC generation.

It concludes the entire CMAC generation operation and clears the cryptographic context from the reserved
secure RAM.

Prototype

int32_t user_crypto_aes_cmac_generate_finish (
user_crypto_io_buf_t * buf
bool truncation_allowed

)

Parameters

Data type Name Description Dir

user_crypto_io_buf_t* buf Output buffer for crypto operation. -

bool truncation_allo | Whether the function may output a partial MAC. -
wed

Return values

Data type Description

int32_t Function execution status.

#ERR_LOG_SUCCESS
#ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_AES_UNSUPPORTED_ERROR
#ERR_LOG_CODE_AES_BUFFER_SMALL_ERROR
#ERR_LOG_CODE_AES_UNAVAILABLE_ERROR
#ERR_LOG_CODE_AES_ERROR

Stack Usage

The execution of this API function has a maximum stack usage of 248 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 65 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.25 user_crypto_aes_cmac_verify_start

Description

This user API function initializes a CMAC verification operation.

Prototype

int32_t user_crypto_aes_cmac_verify_start (
uint32_t key_id
)

Parameters

Data type Name Description Dir

uint32_t key_id Key ID used for CMAC verification operation. Key ID -
rangeis 1to 12.

Return values

Data type Description

int32_t Function execution status.
#ERR_LOG_SUCCESS
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_PARAM_INVALID
#ERR_LOG_CODE_KEY_SLOT_CORRUPTED
#ERR_LOG_CODE_AES_UNSUPPORTED_ERROR
#ERR_LOG_CODE_AES_BUFFER_SMALL_ERROR
#ERR_LOG_CODE_AES_UNAVAILABLE_ERROR
#ERR_LOG_CODE_AES_ERROR

Stack Usage

The execution of this API function has a maximum stack usage of 116 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 66 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.26 user_crypto_aes_cmac_verify_update

Description

This user API function updates the ongoing CMAC verification.

Call user_crypto_aes_cmac_verify_start routine before the first update operation. The function can be called
multiple times.

Prototype

int32_t user_crypto_aes_cmac_verify update (
user_crypto_inp_buf_t * buf
)

Parameters
Data type Name Description Dir
user_crypto_inp_buf_t* buf Input buffer for crypto operation. -

Return values

Data type Description

int32_t Function execution status.

#ERR_LOG_SUCCESS
#ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_AES_UNSUPPORTED_ERROR
#ERR_LOG_CODE_AES_BUFFER_SMALL_ERROR
#ERR_LOG_CODE_AES_UNAVAILABLE_ERROR
#ERR_LOG_CODE_AES_ERROR

Stack Usage

The execution of this API function has a maximum stack usage of 176 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 67 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4,2.27 user_crypto_aes_cmac_verify_finish

Description

This user API function finalizes the ongoing CMAC verification.

The function concludes the entire CMAC verification operation and clears the cryptographic context from the
reserved secure RAM.

Prototype

int32_t user_crypto_aes_cmac_verify finish (
user_crypto_cmac_t * mac

)

Parameters
Data type Name Description Dir
user_crypto_cmac_t * mac Buffer for crypto operation. -

Return values

Data type Description

int32_t Function execution status.

#ERR_LOG_SUCCESS
#ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_AES_UNSUPPORTED_ERROR
#ERR_LOG_CODE_AES_BUFFER_SMALL_ERROR
#ERR_LOG_CODE_AES_UNAVAILABLE_ERROR
#ERR_LOG_CODE_AES_ERROR
#ERR_LOG_CODE_CMAC_VERIFY_FAIL

Stack Usage

The execution of this API function has a maximum stack usage of 272 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 68 Rev. 1.0
2023-05-16

MOTIX™ TLE989x/TLE988x
Firmware User Manual

4 APl documentation

4.2.28 user_crypto_aes_start

Description

This user API function initializes an AES operation.

Prototype

infineon

int32_t user_crypto_aes_start (
user_crypto_fid_t fid
uint32_t key_id
user_crypto_cbc_t * cbc_ctx

)

Parameters
Data type Name Description Dir
user_crypto_fid_t fid The ID of the desired operation. -
uint32_t key_id The key ID used for AES operation. Key ID rangeis1to |-
12.
user_crypto_cbc_t* cbc_ctx Initial vector for the CBC encryption operation. For -
other operations (CBC decryption or ECB operation),
set this to NULL.
Return values
Data type Description
int32_t Function execution status.
#ERR_LOG_SUCCESS
#ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_PARAM_INVALID
#ERR_LOG_CODE_KEY_SLOT_CORRUPTED
#ERR_LOG_CODE_AES_UNSUPPORTED_ERROR
#ERR_LOG_CODE_AES_BUFFER_SMALL_ERROR
#ERR_LOG_CODE_AES_UNAVAILABLE_ERROR
#ERR_LOG_CODE_AES_ERROR
Stack Usage
The execution of this API function has a maximum stack usage of 148 bytes.
Remarks
In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.
Firmware User Manual, Z8F80177275 69 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.29 user_crypto_aes_update

Description

This user APl function updates the ongoing AES operation.
Call user_crypto_aes_start routine before the first update operation. The function can be called multiple times.

Prototype

int32_t user_crypto_aes_update (
user_crypto_io_buf_t * buf

)

Parameters
Data type Name Description Dir
user_crypto_io_buf_t* buf I/O buffer for crypto operation. -

Return values

Data type Description

int32_t Function execution status.

#ERR_LOG_SUCCESS
#ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_PARAM_INVALID
#ERR_LOG_CODE_AES_UNSUPPORTED_ERROR
#ERR_LOG_CODE_AES_BUFFER_SMALL_ERROR
#ERR_LOG_CODE_AES_UNAVAILABLE_ERROR
#ERR_LOG_CODE_AES_ERROR

Stack Usage

The execution of this API function has a maximum stack usage of 240 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 70 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.30 user_crypto_aes_finish

Description

This user API function finalizes the ongoing AES operation.

The function concludes the entire AES operation and clears the cryptographic context from the reserved secure
RAM.

Prototype

int32_t user_crypto_aes_finish (
user_crypto_io_buf_t * buf

)

Parameters
Data type Name Description Dir
user_crypto_io_buf_t* buf I/O buffer for crypto operation. -

Return values

Data type Description

int32_t Function execution status.

#ERR_LOG_SUCCESS
#ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_PARAM_INVALID
#ERR_LOG_CODE_AES_UNSUPPORTED_ERROR
#ERR_LOG_CODE_AES_BUFFER_SMALL_ERROR
#ERR_LOG_CODE_AES_UNAVAILABLE_ERROR
#ERR_LOG_CODE_AES_ERROR

Stack Usage

The execution of this API function has a maximum stack usage of 264 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 71 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.31 user_crypto_key_write

Description

This user APl function writes a cryptographic key to the target key slot.

Prototype

int32_t user_crypto_key write (
user_key write_t * key_write_params

)

Parameters

Data type Name Description Dir

user_key_write_t * key_write_para | Key write parameters. -
ms

Return values

Data type Description

int32_t Function execution status.

#ERR_LOG_SUCCESS
#ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_PARAM_INVALID
#ERR_LOG_CODE_AES_UNSUPPORTED_ERROR
#ERR_LOG_CODE_AES_BUFFER_SMALL_ERROR
#ERR_LOG_CODE_AES_UNAVAILABLE_ERROR
#ERR_LOG_CODE_AES_ERROR
#ERR_LOG_CODE_CMAC_VERIFY_FAIL
#ERR_LOG_CODE_KEY_SLOT_CORRUPTED
#ERR_LOG_CODE_KEY_PROTECTED
#ERR_LOG_CODE_KEY_VERSION
#ERR_LOG_CODE_KEY_SIZE
#ERR_LOG_CODE_ACCESS_AB_MODE_ERROR
#ERR_LOG_CODE_NVM_VER_ERROR

Stack Usage

The execution of this API function has a maximum stack usage of 464 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 72 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.32 user_crypto_key_erase

Description

This user API function erases a cryptographic key.

Prototype

int32_t user_crypto_key_erase (
user_key erase_t * key_erase_params

)

Parameters

Data type Name Description Dir

user_key_erase_t* key_erase_par |Key erase parameters. -
ams

Return values

Data type Description

int32_t Function execution status.

#ERR_LOG_SUCCESS
#ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_PARAM_INVALID
#ERR_LOG_CODE_AES_UNSUPPORTED_ERROR
#ERR_LOG_CODE_AES_BUFFER_SMALL_ERROR
#ERR_LOG_CODE_AES_UNAVAILABLE_ERROR
#ERR_LOG_CODE_AES_ERROR
#ERR_LOG_CODE_CMAC_VERIFY_FAIL
#ERR_LOG_CODE_KEY_SLOT_CORRUPTED
#ERR_LOG_CODE_KEY_PROTECTED
#ERR_LOG_CODE_KEY_VERSION
#ERR_LOG_CODE_KEY_SIZE
#ERR_LOG_CODE_KEY_ERASE_FAIL

Stack Usage

The execution of this API function has a maximum stack usage of 376 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 73 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4,2.33 user_crypto_key_verify

Description

This user API function verifies an existing cryptographic key. An additional key repair operation can be enabled
by setting do_repair.

Prototype

int32_t user_crypto_key_verify (
uint8_t key_id
bool do_repair

)

Parameters

Data type Name Description Dir
uint8_t key_id Key ID to verify. Key ID range is 1 to 12. -
bool do_repair The repair option. -

+ false: Performs a verification operation only.

« true: Performs a verification operation.
Additionally, in case of a verification failure,
attempts to repair the key slot using redundancy.

Return values

Data type Description

int32_t Function execution status.
#ERR_LOG_SUCCESS
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_AES_UNAVAILABLE_ERROR
#ERR_LOG_CODE_PARAM_INVALID
#ERR_LOG_CODE_ACCESS_AB_MODE_ERROR
#ERR_LOG_CODE_KEY_SLOT_MISMATCH
#ERR_LOG_CODE_KEY_SLOT_CORRUPTED
#ERR_LOG_CODE_KEY_VERIFY_FAIL
#ERR_LOG_CODE_NVM_VER_ERROR

Stack Usage

The execution of this API function has a maximum stack usage of 200 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 4 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.34 user_nvm_isr_handler

Description

The NVM read-while-write interrupt handler called by the NVM state machine.

It is needed for the background write/erase operation. The handler shall be specified in the corresponding
vector table. Upon completion of NVM RWW state machine operation, NVM invokes the handler to perform the
rest of the operation.

Prototype

void user_nvm_isr_handler (void)

Parameters

void

Stack Usage

The execution of this API function has a maximum stack usage of 144 bytes.

Remarks

Itis an interrupt handler that can not be called directly.

Firmware User Manual, Z8F80177275 75 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.35 user_secure_download_start

Description
This user API function initializes the secure container and starts the secure download process of data to the
secure container.

The function decrypts the first [0:31] bytes of the input streaming data. Upon successful start of secure
download operation, the next call of user_secure_download_update routine expects [32:159] byte of input
streaming data.

Prototype

int32_t user_secure_download_start (
uint8_t key_id
uint8_t n_sectors
uint8_t * data

)

Parameters

Data type Name Description Dir
uint8_t key_id The ID of the key for decryption, key ID range is 0 to 12. |-
uint8_t n_sectors Size in sectors, of the new secure container. -
uint8_t * data Address of the input buffer. -

Return values

Data type Description

int32_t Function execution status.
#ERR_LOG_SUCCESS
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID
#ERR_LOG_CODE_SIZE_INVALID
#ERR_LOG_CODE_SEGMENT_PROTECTED
#ERR_LOG_CODE_ACCESS_AB_MODE_ERROR
#ERR_LOG_CODE_PARAM_INVALID
#ERR_LOG_CODE_AES_UNSUPPORTED_ERROR
#ERR_LOG_CODE_AES_BUFFER_SMALL_ERROR
#ERR_LOG_CODE_AES_UNAVAILABLE_ERROR
#ERR_LOG_CODE_AES_ERROR

Stack Usage

The execution of this API function has a maximum stack usage of 304 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 76 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.36 user_secure_download_update

Description

This user API function continues the secure download process of data to the secure container.

Call the user_secure_download_start routine before the first update operation. The function can be called
multiple times. Each call decrypts 128 bytes of input streaming data and writes the decrypted data (128 bytes)
into the target page. The user shall feed in new data with each call.

Prototype

int32_t user_secure_download_update (
uint32_t page_index
uint8_t * data

)

Parameters

Data type Name Description Dir

uint32_t page_index The index of the page to which to write, starting froma |-
secure container start address.

uint8_t * data Address of the input buffer. -

Return values

Data type Description

int32_t Function execution status.

#ERR_LOG_SUCCESS
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_USER_POINTER_RAM_RANGE_INVALID
#ERR_LOG_CODE_PARAM_INVALID
#ERR_LOG_CODE_AES_UNSUPPORTED_ERROR
#ERR_LOG_CODE_AES_BUFFER_SMALL_ERROR
#ERR_LOG_CODE_AES_UNAVAILABLE_ERROR
#ERR_LOG_CODE_AES_ERROR
#ERR_LOG_CODE_NVM_VER_ERROR

Stack Usage

The execution of this API function has a maximum stack usage of 432 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 7 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.37 user_secure_download_finish

Description

This user API function finalizes the secure download process of data to the secure container.
The function concludes the entire secure download process and clears the cryptographic context.

Prototype

int32_t user_secure_download_finish (void)

Parameters

void

Return values

Data type Description

int32_t Function execution status.
#ERR_LOG_SUCCESS
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_AES_UNSUPPORTED_ERROR
#ERR_LOG_CODE_AES_BUFFER_SMALL_ERROR
#ERR_LOG_CODE_AES_UNAVAILABLE_ERROR
#ERR_LOG_CODE_AES_ERROR

Stack Usage

The execution of this API function has a maximum stack usage of 448 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 78 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.38 user_cache_operation

Description

This user APl function provides an alternative to writing to cache registers in addition to direct register access.

Prototype

int32_t user_cache_operation (
user_cache_op_t op
uint32_t address

)
Parameters
Data type Name Description Dir
user_cache_op_t op The code for the cache operation to perform. -
uint32_t address The memory address, namely the FLASH1 access. -

Return values

Data type Description

int32_t Function execution status.
#ERR_LOG_SUCCESS
#ERR_LOG_CODE_PARAM_INVALID

Stack Usage

The execution of this APl function has a maximum stack usage of 12 bytes.

Firmware User Manual, Z8F80177275 79 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.39 user_secure_dualboot

Description

This user API function configures and enables the secondary UBSL image.

Prototype

int32_t user_secure_dualboot (
uint32_t image_offset

)

Parameters

Data type Name Description Dir

uint32_t image_offset | New image address offset (the offset of startup page -
address), starting from the UBSL segment start address.

Return values

Data type Description

int32_t Function execution status.
#ERR_LOG_SUCCESS
#ERR_LOG_CODE_MEM_ADDR_RANGE_INVALID
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_ACCESS_AB_MODE_ERROR
#ERR_LOG_CODE_NVM_VER_ERROR

Stack Usage

The execution of this API function has a maximum stack usage of 144 bytes.

Remarks

This functional is callable only from UBSL segment.
In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

Firmware User Manual, Z8F80177275 80 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.2.40 user_ubsl_size_restore

Description

This user API function is used to restore the UBSL size in case of a Stop mode exit.

Prototype

void user_ubsl size restore (void)

Parameters

void

Stack Usage

The execution of this API function does not need stack memory.

Remarks

If user has an UBSL size configuration different than the default setting, in case of stop mode exit, this function
must be called after exit from the Stop mode.

Firmware User Manual, Z8F80177275 81 Rev. 1.0
2023-05-16

MOTIX™ TLE989x/TLE988x
Firmware User Manual

4 APl documentation

4.2.41 user_nvm_perm_protect_set

Description

This user API function sets permanent protection on all NVM segments.

Prototype

infineon

int32_t user_nvm_perm_protect_set (
uint32_t passphrase

)

Parameters

Data type Name Description Dir

uint32_t passphrase An encoding of the target segment and the erase flag. |-

Return values

Data type Description

int32_t Function execution status.
#ERR_LOG_SUCCESS
#ERR_LOG_CODE_SEMAPHORE_RESERVED
#ERR_LOG_CODE_USER_PROTECT_WRONG_PASSWORD
#ERR_LOG_CODE_SEGMENT_PROTECTED
#ERR_LOG_CODE_NVM_APPLY_PROTECTION_FAIL
#ERR_LOG_CODE_ACCESS_AB_MODE_ERROR
#ERR_LOG_CODE_NVM_VER_ERROR
#ERR_LOG_CODE_ECC2READ_ERROR

Stack Usage

The execution of this API function has a maximum stack usage of 168 bytes.

Remarks

In an interrupt or multithreaded environment, this function cannot be called in a re-entrant context.

It is recommended to disable the interrupt before calling the function.

Firmware User Manual, Z8F80177275 82 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.3 Data types and structure reference

This chapter contains the reference of data types and structures of all modules.

4.3.1 User APl data types

These routines are exported by the BootROM to the customer user mode software.

Table 42 User API data types structure overview

Name Description

user_100tp_read_t 100TP read parameters.

user_100tp_write_t 100TP write parameters.
user_crypto_inp_buf_t Input buffer for crypto operation.
user_crypto_out_buf _t Output buffer for crypto operation.
user_crypto_io_buf_t I/O buffer for crypto operation.
user_crypto_cmac_t Buffer for crypto operation.

user_crypto_cbc_t Initial vector for the CBC encryption operation.
user_key_write_t Key write configuration.
user_key_write_params_t Key write parameters.

user_key_erase_t Key erase configuration.
user_key_erase_params_t Key erase parameters.
user_nvm_page_write_t NVM write parameters.

user_key_t User key data structure.

Firmware User Manual, Z8F80177275 83 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.3.1.1 user_100tp_read_t

Prototype

typedef struct user_100tp_read_t
{

uint32_t offset;

uint8_t *data;

uintl6_t nbyte;
} user_100tp_read_t;

Parameters

Name Description

offset Byte offset inside the selected page address, where to
start reading. Maximum is 127 bytes.

data Data pointer where to write data into. Pointer plus

valid count must be within valid RAM range or an error
code is returned

nbyte Amount of data bytes to read. If nbyte is zero, there is
no read operation done and an error code is returned.
Maximum is 128 bytes.

Firmware User Manual, Z8F80177275 84 Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.3.1.2 user_100tp_write_t

Prototype

typedef struct user_100tp_write_t
{

uint32_t offset;

uint8_t *data;

uint8_t nbyte;

uint8_t counter;
} user_1l00tp_write_t;

Parameters

Name Description

offset Byte offset inside the selected page address, where to
start writing. Maximum is 123 bytes.

data Data pointer where to read the data to write. Pointer
plus valid count must be within valid RAM range or an
error code is returned

nbyte Amount of data bytes to write. If nbyte is zero, there is
no write operation done and an error code is returned.
Maximum is 124 bytes.

counter Counter value to update internal 100TP counter (only
updates if value is greater than current, otherwise is
ignored)

Firmware User Manual, Z8F80177275 85 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.3.1.3 user_crypto_inp_buf_t

Prototype

typedef struct user_crypto_inp_buf_t
{

uint8_t *buffer;

uint32_t length;
} user_crypto_inp_buf_t;

Parameters

Name Description

buffer Crypto algorithm input buffer address

length Crypto algorithm input buffer length

Firmware User Manual, Z8F80177275 86 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.3.1.4 user_crypto_out_buf_t

Prototype

typedef struct user_crypto_out_buf_t
{

uint8_t *buffer;

uint32_t *length;
} user_crypto_out_buf_t;

Parameters

Name Description

buffer Crypto algorithm output buffer address

length Crypto algorithm output buffer length

Firmware User Manual, Z8F80177275 87 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.3.1.5 user_crypto_io_buf_t

Prototype

typedef struct user_crypto_io buf_t
{
user_crypto_inp_buf_t inp;
user_crypto_out_buf_t out;
} user_crypto_io_buf_t;

Parameters

Name Description

inp Crypto algorithm input buffer

out Crypto algorithm output buffer

Firmware User Manual, Z8F80177275 88 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.3.1.6 user_crypto_cmac_t

Prototype

typedef struct user_crypto_cmac_t
{
user_crypto_inp_buf_t inp;
user_crypto_inp_buf_t mac;
} user_crypto_cmac_t;

Parameters

Name Description

inp CMAC generate input buffer

mac CMAC generate output buffer

Firmware User Manual, Z8F80177275 89 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.3.1.7 user_crypto_cbc_t

Prototype

typedef struct user_crypto_cbc_t
{

void *iv;

uint32_t iv_length;
} user_crypto_cbc_t;

Parameters

Name Description

iv CBC input vector

iv_length CBC input vector length

Firmware User Manual, Z8F80177275 90 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.3.1.8 user_key_write_t

Prototype

typedef struct user_key write_t

{

user_key write_params_t params;
uint8_t signature[USER_CMAC_SIGNATURE_SIZE];

} user_key write_t;

Parameters

Name Description

params Input parameters (signature checked)

signature New key CMAC signature

Firmware User Manual, Z8F80177275 91 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.3.1.9 user_key_write_params_t

Prototype

typedef struct user_key write_params_t

{
uint8_t encrypted_key buf[USER_KEY_PARAM_SIZE];
uintle_t target_key_id;
uintle_t encrypt_key_id;

} user_key_write_params_t;

Parameters

Name Description

encrypted_key_buf Encrypted buffer with new key parameters
target_key_id Key slot ID for parameter decryption

encrypt_key_id Key slot ID used for the new key parameters

Firmware User Manual, Z8F80177275 92 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.3.1.10 user_key_erase_t

Prototype

typedef struct user_key erase_t

{

user_key_erase_params_t params;
uint8_t signature[USER_CMAC_SIGNATURE_SIZE];

} user_key erase_t;

Parameters

Name Description

params Input parameters (signature checked)

signature CMAC signature

Firmware User Manual, Z8F80177275 93 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.3.1.11 user_key_erase_params_t

Prototype

typedef struct user_key_erase_params_t
{

uintl6e_t target_key_id;

uintl6_t version;
} user_key_erase_params_t;

Parameters
Name Description
target_key_id Key slot ID for parameter decryption
version New key version number
Firmware User Manual, Z8F80177275 94 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.3.1.12 user_nvm_page_write_t

Prototype

typedef struct user_nvm_page_write_t
{

uint8_t *data;

uint32_t nbyte;

uint32_t options;
} user_nvm_page write_t;

Parameters

Name Description

data Pointer to the data where to read the programming
data. Pointer must be within valid RAM range or an
error code is returned.

nbyte Amount of bytes to program. Range from 1-128 bytes.

options NVM programming options
(e.g. NVM_OPTIONS_CORR_ACT or
NVM_OPTIONS_NO_FAILPAGE_ERASE, see for a full
list)

Firmware User Manual, Z8F80177275 95 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.3.1.13 user_key_t

Prototype

typedef struct user_key t
{
uints_t key[USER_KEY_SIZE_MAX];
uintl6_t version;
uint8_t length;
uint8_t protection;
} user_key_t;

Parameters

Name Description

key Key value

version New key version number

length Key size in bytes (16 or 32)

protection Key protection

Firmware User Manual, Z8F80177275 96 Rev. 1.0

2023-05-16

MOTIX™ TLE989x/TLE988x
Firmware User Manual

4 APl documentation

4.3.2 User APl enumerations

This chapter contains the enumerator reference.

Table 43 Enumerator overview

infineon

Name

Description

user_crypto_fid_t

user_cache_op_t

user_nvm_segment_t

erase_scope_e

Firmware User Manual, Z8F80177275

97

Rev. 1.0
2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.3.2.1 user_crypto_fid_t

Prototype

typedef enum user_crypto_fid_t

{
CRYPTO_ECB_ENCRYPT = @,
CRYPTO_ECB_DECRYPT = 1,
CRYPTO_CBC_ENCRYPT = 2,
CRYPTO_CBC_DECRYPT = 3

} user_crypto_fid_t;

Parameters

Name Value Description

CRYPTO_ECB_ENCRYPT 004 Encrypt with ECB
CRYPTO_ECB_DECRYPT 01y Decrypt with ECB
CRYPTO_CBC_ENCRYPT 024 Encrypt with CBC
CRYPTO_CBC_DECRYPT 034 Decrypt with CBC

Firmware User Manual, Z8F80177275 98 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.3.2.2 user_cache_op_t

Prototype

typedef enum user_cache_op_t

{
CACHE_OP_AC =
CACHE_OP_SC =
CACHE_OP_BC =
CACHE_OP BT =
CACHE_OP BL =
CACHE_OP_BU =
CACHE_OP_EN =
CACHE_OP_DIS =

} user_cache_op_t;

- -

-

- - -

N o v b WNBR O
-

Parameters

Name Description

CACHE_OP_AC 00y Cache all clean operation
CACHE_OP_SC 01y Cache set clean operation
CACHE_OP_BC 024 Cache block clean operation
CACHE_OP_BT 034 Cache block touch operation
CACHE_OP_BL 04y Cache block lock operation
CACHE_OP_BU 054 Cache block unlock operation
CACHE_OP_EN 06 Cache enable operation
CACHE_OP_DIS 07H Cache disable operation
Firmware User Manual, Z8F80177275 99 Rev. 1.0

2023-05-16

o~ _.
MOTIX™ TLE989x/TLE988x |nf| neon
Firmware User Manual

4 APl documentation

4.3.2.3 user_nvm_segment_t

Prototype

typedef enum user_nvm_segment_t
{
NVM_PASSWORD_SEGMENT BOOT = 0,
NVM_PASSWORD_SEGMENT_CODE = 1,
NVM_PASSWORD_SEGMENT_DATA = 2,
NVM_PASSWORD_SEGMENT_TOTAL = 3
} user_nvm_segment_t;

Parameters

Name Value Description

NVM_PASSWORD_SEGMENT_BOOT |00 NVM password for customer
segment, used for customer
bootloader (FLASHO).

NVM_PASSWORD_SEGMENT_CODE |01y NVM password for customer code
segment, which is not used by the
customer bootloader (FLASH1).

NVM_PASSWORD_SEGMENT_DATA |02y NVM password for customer data
mapped segment (FLASHO).

NVM_PASSWORD_SEGMENT_TOTAL | 034 Can be ignored and should not be
used

Firmware User Manual, Z8F80177275 100 Rev. 1.0

2023-05-16

MOTIX™ TLE989x/TLE988x
Firmware User Manual

infineon

4 APl documentation

4.3.2.4 erase_scope_e

Description

Erase scope.

Prototype

typedef enum {
NVM_ERASE_PAGE = 0x00,
NVM_ERASE_SECTOR = 0x01,
NVM_ERASE_COMPLETE = 0x02,
} erase_scope_e;

Parameters

Name Value Description
NVM_ERASE_PAGE 004 Page erase
NVM_ERASE_SECTOR 01y Sector erase
NVM_ERASE_COMPLETE 024 Mass erase

Firmware User Manual, Z8F80177275

Rev. 1.0
2023-05-16

MOTIX™ TLE989x/TLE988x
Firmware User Manual

infineon

4 APl documentation

4.3.3 Constant reference

This chapter contains the constant reference.

Table 44 Constant overview

Name Value Description

NVM_FLASH_0 00y Target NVM FLASHO.

NVM_FLASH_1 01y Target NVM FLASH1.

NVM_SEG_PROT_UBSL_NO_ERASE | BB0055554 UBSL segment passphrase without erase flag.

NVM_SEG_PROT_UBSL_DO_ERASE | BBFF55554 UBSL segment passphrase with erase flag.

NVM_SEG_PROT_CODE_NO_ERASE | CC0055554 UCODE segment passphrase without erase flag.

NVM_SEG_PROT_CODE_DO_ERASE |CCFF5555, UCODE segment passphrase with erase flag.

NVM_SEG_PROT_DATA_NO_ERASE | DD0055554 UDATA segment passphrase without erase flag.

NVM_SEG_PROT_DATA_DO_ERASE | DDFF5555, UDATA segment passphrase with erase flag.

NVM_OPTIONS_NONE 00y NVM operation options. No options provided, the
default setting: corrective action disabled, RWW
enabled, failpage erase enabled.

NVM_OPTIONS_RWW_DISABLE 01y Disable RWW.

NVM_OPTIONS_CORR_ACT 024 Disturb handling and retry enabled (data mapped
mode only).

NVM_OPTIONS_NO_FAILPAGE_ERAS |04y Erasing of programmed data on fail enabled (data

E linear mode only).

NVM_OP_STS_FLASH_READY OH NVM flash NOT busy status operation return code.

NVM_OP_STS_FLASH_0_BUSY 01y NVM FLASHO busy status operation return code.

NVM_OP_STS_FLASH_1_BUSY 024 NVM FLASH1 busy status operation return code.

NVM_RET_PROTECTED 01y NVM segment is protected.

NVM_RET_NOT_PROTECTED 004 NVM segment is not protected.

Table 45 NVM_OP_RESULT register error log codes

Error Log Name Error Log Code

ERR_LOG_SUCCESS 00y

ERR_LOG_CODE_ACCESS_AB_MODE_ERROR FFFFFFD9y

ERR_LOG_CODE_NVM_ECC2_DATA_ERROR FFFFFFD8y

ERR_LOG_CODE_NVM_VER_ERROR FFFFFFD7y

ERR_LOG_CODE_MAPRAM_INIT_FAIL FFFFFFD6

ERR_LOG_CODE_VERIFY_AND_MAPRAM_INIT_FAIL FFFFFFD5y

Firmware User Manual, Z8F80177275 102 Rev. 1.0

2023-05-16

MOTIX™ TLE989x/TLE988x
Firmware User Manual

infineon

5 Glossary

5 Glossary

100TP 100-time-programming

AES Advanced Encryption Standard

API Application Programming Interface

ASClI American Standard Code for Information Interchange
BSL Bootstrap Loader

BootROM Boot code in ROM

CAN Controller Area Network

CBC Cipher Block Chaining

CFSO Configuration Sector 0

Ciphertext Encrypted text (confer Plaintext)

CS Configuration Sector

CMAC Cipher-based Message Authentication Code

CPU Central Processing Unit

DSRAM Data Static Random Access Memory

EEPROM Electrically Erasable Programmable Read-Only Memory
ECB Electronic Code Book

ECC Error Correcting Code

EOT End of Transmission

FAR Fault, Asset, and Risk

FLASHO First flash bank (NVMO)

FLASH1 Second flash bank (NVM1)

FS_WDT Fail-safe Watchdog

FSM Finite State Machine

ID Identifier

ISR Interrupt Service Routine

LSB Least Significant Bit

MAC Message Authentication Code

MBIST Memory Built-in Self-test

MCU Microcontroller Unit

MSB Most Significant Bit

NAC No-activity Counter

NAD Node Address

NVM Non-volatile Memory

Plaintext Unencrypted or decrypted text (confer Ciphertext)
PSRAM Program Static Random Access Memory

Firmware User Manual, Z8F80177275 103 Rev. 1.0

2023-05-16

MOTIX™ TLE989x/TLE988x
Firmware User Manual

infineon

5 Glossary

RAM Random Access Memory
ROM Read Only Memory

RWW Read-while-write

SA Service Algorithm

SDK Software Development Kit
SRAM Static Random Access Memory
SSC Secured Software Container
SWD Serial Wire Debug

UBSL User Bootstrap Loader
UCODE User Code

UDATA User Data

Firmware User Manual, Z8F80177275

104

Rev. 1.0
2023-05-16

MOTIX™ TLE989x/TLE988x
Firmware User Manual

6 Revision history

afineon

6 Revision history
Revision |Date Changes
1.0 2023-05-16 |Initial version

Firmware User Manual, Z8F80177275

105

Rev. 1.0
2023-05-16

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-05-16
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2023 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?

Email: erratum@infineon.com

Document reference
IFX-Z8F80177275

Important notice

The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”).

With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.

In addition, any information given in this document is
subject to customer’s compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer’s products and any use of the product of
Infineon Technologies in customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Firmware architecture
	1.1 Startup
	1.2 Default Bootstrap Loader (BSL)
	1.3 User Bootstrap Loader (UBSL)
	1.4 Utility functions
	1.5 Cryptographic library
	1.6 Secured software container

	2 Boot modes
	2.1 BSL mode
	2.1.1 Host synchronization
	2.1.1.1 NAD address
	2.1.1.2 NAC time

	2.1.2 Media frame format
	2.1.3 Media frame timing
	2.1.4 Media frame timeout

	2.2 User mode
	2.2.1 Debug mode
	2.2.2 Secure boot
	2.2.3 Reset pin configuration

	2.3 Error state

	3 Programming model
	3.1 Memory protection and handling
	3.1.1 Read-while-write (RWW)
	3.1.2 NVM read protection
	3.1.3 Permanent protection
	3.1.4 Service algorithm

	3.2 Cryptographic operations and security
	3.2.1 AES operation
	3.2.2 CMAC operation
	3.2.3 Key write operation
	3.2.4 Secured software container
	3.2.5 Secure software download

	3.3 Debug interface

	4 API documentation
	4.1 BSL commands
	4.1.1 Cmd 0x86 Memory execute
	4.1.2 Cmd 0x98 NVM permanent protection clear
	4.1.3 Cmd 0x0C NVM verify
	4.1.4 Cmd 0x93 BSL baud rate set
	4.1.5 Cmd 0x92 Device reset
	4.1.6 Cmd 0x89 NVM permanent protection set
	4.1.7 Cmd 0x05 Memory write
	4.1.8 Cmd 0x87 Memory read
	4.1.9 Cmd 0x88 NVM erase
	4.1.10 Cmd 0x0D NVM 100TP write
	4.1.11 Cmd 0x8E NVM 100TP read
	4.1.12 Cmd 0x97 NVM 100TP erase
	4.1.13 Cmd 0x99 UBSL size set
	4.1.14 Cmd 0x9C UBSL privilege set
	4.1.15 Resp 0x80 Data response
	4.1.16 Resp 0x81 Acknowledge response

	4.2 User API routines
	4.2.1 user_nvm_service_algorithm
	4.2.2 user_nvm_mapram_recover
	4.2.3 user_nvm_mapram_init
	4.2.4 user_cid_get
	4.2.5 user_nvm_ecc_check
	4.2.6 user_nvm_ecc_addr_get
	4.2.7 user_nvm_100tp_read
	4.2.8 user_nvm_100tp_write
	4.2.9 user_nvm_100tp_erase
	4.2.10 user_nvm_config_get
	4.2.11 user_nvm_temp_protect_get
	4.2.12 user_nvm_udata_temp_protect_set
	4.2.13 user_nvm_ucode_temp_protect_set
	4.2.14 user_nvm_ubsl_temp_protect_set
	4.2.15 user_nvm_udata_temp_protect_clear
	4.2.16 user_nvm_ucode_temp_protect_clear
	4.2.17 user_nvm_ubsl_temp_protect_clear
	4.2.18 user_nvm_page_erase
	4.2.19 user_nvm_sector_erase
	4.2.20 user_nvm_page_write
	4.2.21 user_ram_mbist
	4.2.22 user_crypto_aes_cmac_generate_start
	4.2.23 user_crypto_aes_cmac_generate_update
	4.2.24 user_crypto_aes_cmac_generate_finish
	4.2.25 user_crypto_aes_cmac_verify_start
	4.2.26 user_crypto_aes_cmac_verify_update
	4.2.27 user_crypto_aes_cmac_verify_finish
	4.2.28 user_crypto_aes_start
	4.2.29 user_crypto_aes_update
	4.2.30 user_crypto_aes_finish
	4.2.31 user_crypto_key_write
	4.2.32 user_crypto_key_erase
	4.2.33 user_crypto_key_verify
	4.2.34 user_nvm_isr_handler
	4.2.35 user_secure_download_start
	4.2.36 user_secure_download_update
	4.2.37 user_secure_download_finish
	4.2.38 user_cache_operation
	4.2.39 user_secure_dualboot
	4.2.40 user_ubsl_size_restore
	4.2.41 user_nvm_perm_protect_set

	4.3 Data types and structure reference
	4.3.1 User API data types
	4.3.1.1 user_100tp_read_t
	4.3.1.2 user_100tp_write_t
	4.3.1.3 user_crypto_inp_buf_t
	4.3.1.4 user_crypto_out_buf_t
	4.3.1.5 user_crypto_io_buf_t
	4.3.1.6 user_crypto_cmac_t
	4.3.1.7 user_crypto_cbc_t
	4.3.1.8 user_key_write_t
	4.3.1.9 user_key_write_params_t
	4.3.1.10 user_key_erase_t
	4.3.1.11 user_key_erase_params_t
	4.3.1.12 user_nvm_page_write_t
	4.3.1.13 user_key_t

	4.3.2 User API enumerations
	4.3.2.1 user_crypto_fid_t
	4.3.2.2 user_cache_op_t
	4.3.2.3 user_nvm_segment_t
	4.3.2.4 erase_scope_e

	4.3.3 Constant reference

	5 Glossary
	6 Revision history
	Disclaimer

