Exercise 1 A first CMSIS-RTOS2 project

This project will take you through the steps necessary to create and debug a CMSIS-RTOS2 based
project.

. . @ © &
First start the pack installer

This can be done from within microvision from the main toolbar

188 Pack Installer - C:\Keil_vS\ARMNPACK - o0 X
File Packs Window Help
o | Board: cMs\s,RTo“ana\ V2.0 0
14] Devices ' Boards o] |4l Packs ' Examples o
Search: - X [V Show examples from installed Packs only
Board /| Summary Example /| Action FYescription
a- Bl CMsIs_RTOS Tutorial (v2.0) 9 STM32F103RE B Ex 1 First project (CMSIS_RTOS Tutorial) & Cop Creating a first CMSIS RTOS Project
=B Colibri-iMXT MCIMX7D7. 1 x 512MB NAND Flash_1x 512MB DDR3 £x 2 Threads (CMSIS_RTOS_Tutorial) & Copy Creating Threads and managing Thread priority

In the pack installer select the boards tab, then select the CMSIS-RTOS Tutorial
Next select the Examples tab and open the first example by pressing the copy button

This will open a project shell which has been setup for the STM32F103B. This is a basic Cortex-M3
microcontroller. In microvision there is a legacy simulator which has a full model for the STM32F103.
This allows us to experiment with CMSIS-RTOS2 without the need for a specific hardware board.

This first project is a multi project workspace. The shell project is set as the active project. A pre built
working project is included as a reference. If you want to build this project highlight the project, right
click and select “Set as active project”. Any compile and debug actions will work on the active project.

Project
- 28 WorkSpace
--*% Project: CMSISrtxFirstProject
+ -] Target1
+ 1% Project: Pre_built

Set as Active Project

&5
Open the Run Time Environment (RTE) by selecting the green diamond on the toolbar

The RTE allows you to configure the platform of software components you are going to use in a given
project. As well as displaying the available components the RTE understands their dependencies on

other components.

8 Manage Run-Time Envirenment x
Software Component Sel. Variant Version Description
€ Board Support MCBSTMZ2E ~]200 |Keil Development Board MCBSTM3ZE -
B4 sl Cortex Software Interface Component:
@ CORE 2 5.0.1 CMSIS-CORE for Cortex-M. SC000, SC300, ARMv8-M
w Dsp r 131 CMSIS-DSP Library for Cortex- M, SC000, and SC300
=] @ RTOS (API) 1.00 CMSIS-RTOS AP| for Cortex-M, SC000, and SC300

@ FreeRTOS r 900 CMSIS-RTOS implementation for Cortex-M based on FreeRTOS

@ Keil RTXS r 510 CMSIS-RTOSRTXS implementation for Cortex-M, SC00D, and SC300

Keil RTX !’ 4810 | CMSIS-RTOS R for Cortex-M, SC000, and SC300

=€ RTOS2 (AP)) 210 CMSIS-RTOS AP for Cortex-M, SC000, and SC300

@ FreeRIOS r 900 CMSISRTOS2 For Corter-M based on FreeRTOS

¢ [EEE . [source v[s510 CMSIS-RTOS2 RTXS for Cortex-M. SC000, C300 and ARMv8-M (Source)
& CMSIS Driver Unified Device Drivers CMSIS-Driver i
& Compiler ARM Compiler 120 Compiler Extensions for ARM Compiler 5 and ARM Compiler §
€ DataExchange Software Components for Data Exchange
@ Device Stertup, System Setup v
@ FileSystem MDK-Pro ~|698 | File Access onvarious storage devices
@ Graphics MDK-Pro w5366 User Interface on graphical LCD displays
@ Network MDK-Pro v |7.50 /1 using Ethernet or Serial protocols.
@ RTOS FreeRTOS. 9.00 FreeRTOS Real Time Kernel j

Validation Output

Resolve | | Select Packs Detaiis

Description

Help

Fig 6 Add the RTOS

To configure the project for use with the CMSIS-RTOS2 Keil RTX, simply tick the CMSIS::RTOS2

(API1):Keil RTX5 box.

Switch the Keil RTX5 dropdown variant box from ‘Source’ to ‘Library’.

o4 CMsIS
@ CORE
@ Dsp
4 RTOS (AP))
-4 RTOS2 (API)
¥ FreeRTOS

.

-
-

501
12; Fig 7 If the Sel column elements turn
510 Orange then the RTOS requires other
900 components to be added

~|51.0

This will cause the selection box to turn orange meaning that additional components are required.
The required component will be displayed in the Validation Output window.

Validation Qutput
=4 ARM:CMSIS:RTOS2:Keil RTXS
[=-require CMSIS:CORE
¥ ARM:CMSIS:CORE
= require Device:Startup
¥ Keil:Device:Startup

Description

Additional software components required

Select component from list

CMBSIS-CORE for Cortex-M, SC000, 5C300, ARMvE-M

Select component from list

Systemn Startup for STMicroelectronics STM32F 1 device series

Fig 8 The validation box lists the missing components

To add the missing components you can press the Resolve button in the bottom left hand corner of

the RTE.

This will add the device startup code and the CMSIS Core support. When all the necessary components
are present the selection column will turn green.

KA Manage Run-Time Environment be
Software Component Sel. Variant Version Description
R JBoardSupport | MCBSTM32E ~|200 Keil Development Board MCBSTM32E -
=4 CMSIS Cortex Microcontroller Software Interface Components
@ CORE [v 5.0.1 CIMSIS-CORE for Cortex-, SCO00. SC300, ARMvE-M
@ Dsp r 151 CIMSIS-DSP Library for Cortex-h, SC000. and SC300
= 4p RTOS (API) 1.00 CIMSIS-RTOS AP for Cortex-I, SC000, and SC300
o 4 RTOSZ (API) 210 CIMSIS-RTOS AP for Cortex-I, SC000, and SC300
@ FreeRTOS r 9.00 CIMSIS-RTOS2 implementation for Cortex-M based on FreeRTOS
@ Keil RTXS v |Library ~[s10 CIMSIS-RTOS2 RTXS for Cortex-h, SC00D, C300 and ARMB-M (Library)
= @ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
= 4 Compiler ARM Compiler 1.20 Compiler Extensions for ARM Compiler 5 and ARM Compiler 6
4 Data Exchange Software Components for Data Exchange
=€ Device Startup, System Setup
@ DMA - 12 DMA diriver used by RTE Drivers for STM32F1 Series
¥ GPIO [12 GPIO driver used by RTE Drivers for STM32F1 Series
@ Startup [1.00 System Startup for STMicroelectronics STM32F i device series
@ StartupConfig r 8130 |Stackand Heap configuration ~|
Validation Output Description
Resolve | | Select Packs Details Cancel Help

Fig 9 pressing the resolve button adds the missing components and the Sel. Column turns green

It is also possible to access a components help files by clicking on the blue hyperlink in the Description
column.

The other RTOS options will be discussed towards the end of this tutorial.

Now press the OK button and all the selected components will be added to the new project

Project
571§ Project: test
-5 Target 1
1 Seurce Group 1
=4 cmsis
ﬁ RTX_CM3.lib (RTOS52:Keil RTX3)
ﬁ ri_lib.c (RTOS2:Keil RTX3)
J RTX_Config.c (RTOS2:Keil RTX3)
] RTX_Config.h (RTOS2:Keil RTX3)
= @ Device
] RTE_Device.h (Startup)
j startup_stm32f 10x_md.s (Startup)
] systern_stm32f10.c (Startup)

Fig 9 The configured project platform

The CMSIS components are added to folders displayed as a green diamond. There are two types of file
here. The first type is a library file which is held within the tool chain and is not editable. This file is
shown with a yellow key to show that it is ‘locked’ (read-only). The second type of file is a configuration
file. These files are copied to your project directory and can be edited as necessary. Each of these files
can be displayed as a text files but it is also possible to view the configuration options as a set of pick
lists and drop down menus.

To see this open the RTX_Config.h file and at the bottom of the editor window select the
‘Configuration Wizard’ tab.

Fig 10 Selecting the configuration wizard

I
I\Text Editarl.-'-r.l Configuration Wizard I.-'r

Click on Expand All to see all of the configuration options as a graphical pick list:

] RTX_Config.h

Expand All I Collapse All Help I Show Grd
Option Value
[=-System Cenfiguration
Global Dynamic Memory size [bytes] 4096
Kernel Tick Frequency [Hz] 1000
Round-Robin Thread switching v
Event Recording
ISR FIFO 16 entri . . .
Threag f_o"”e"'? fME Fig 11 The RTX configuration
read Configuration options

(53}

Timer Configuration

i3}

Event Flags Configuration

&3]

Mutex Configuration

=

Semaphore Configuration

(&3]

Memary Pool Configuration

&3]

Message Queue Configuration

For now it is not necessary to make any changes here and these options will be examined towards the
end of this tutorial.

Our project contains four configuration files three of which are standard CMSIS files

File name Description

Startup_STM32F10x_md.s Assembler vector table
System_STM32F10x.c C code to initialize key system
peripherals, such as clock tree, PLL
external memory interface.
RTE_Device.h Configures the pin multiplex
RTX_Config.h Configures Keil RTX

Table 2 Project configuration files

Now that we have the basic platform for our project in place we can add some user source code which
will start the RTOS and create a running thread.

To do this right-click the ‘Source Group 1’ folder and select ‘Add new item to Source Group 1’

=24 Project: firstRtxProject

g Targetl
[J Source Groupl
= . CMSIS ;ﬁ\ Options for Group "Source Group 1'... Alt+F7
Fig 12 Adding a source module
®7 RTX_CM3. g g
Add Mew Item to Group 'Source Group 1.
|1 RT¥_Conf.
. Add Existing Files to Group 'Source Group 1'...
= ’ Device . P P

In the Add new Item dialog select the ’User code template’ Icon and in the CMSIS section select the
‘CMSIS-RTOS ‘main’ function’ and click Add

@ C File {c)

%

C‘ C++ File {.cpp)

\ﬂ Asm File ()

@ Header File (h)
\% Tet File ()
Qg\ Image File)
7‘@ User Code Template

Add Mew ltem te Group 'Seurce Group 1'

Add template file(s) to the project.

Component MName
RTO52:Keil RTX3 CMSIS-RTOS2 'main’ function

Rel KTAY CMEIE-RTUSS Events
RTO52:Keil RTX3 CMSI5-RTOS52 Memory Pool
RTOS2:Keil RTX3 CMSIS-RTOS2 Message Queue
RTOS2:Keil RTX3 CMSIS-RTOS2 Mutex
RTOS52:Keil RTX5 CMSI5-RTOS2 Semaphore
RTOS2:Keil RTX3 CMSIS-RTOS2 Thread

RTOSZ:Keil RTX3 CMSIS-RTOSZ Timer

o9 Device j
Type: | User Code Template
Name: |
Location: | Critest
Close Help

Repeat this but this time select ‘CMSIS-RTOS2 Thread’.

This will now add two source files to our project main.c and thread.c

=-*% Project: firstRbProject

—|-s6 Targetl

=5 Source Group 1

+ _1 mairn.c

+ _1 Thread.c

Open thread.c in the editor

Fig 13 selecting a CMSIS RTOS
template

Fig 14 The project with main and
Thread code

We will look at the RTOS definitions in this project in the next section. For now this file contains two
functions Init_Thread() which is used to start the thread running and the actual thread function.

Copy the Init_Thread function prototype and then open main.c

Main contains the functions to initialize and start the RTOS kernel. Then unlike a bare metal project
main is allowed to terminate rather than enter an endless loop. However this is not really
recommended and we will look at a more elegant way of terminating a thread later.

In main.c add the Init_Thread prototype as an external declaration and then call it after the
osKernellnitialize() function as shown below.

extern int Init_Thread (void);

/*

* Application main thread

*/

void app_main (void *argument) {

Init_Thread ();

for (;;) {}

Build the project (F7)

Start the debugger (Ctrl+F5)

This will run the code up to main

Open the Debug = View = Watch Windows = RTX RTOS

Start the code running (F5)

RTX RTOS
Property
—|-System
Kernel ID
Kernel State
Kernel Tick Count
Kernel Tick Frequency
Systern Timer Frequency
Reund Rebin Tick Count
Round Rebin Timeout
Global Dynamic Memory
Stack Owverrun Check
Stack Usage Watermark
Default Thread Stack Size
ISR FIFQ Queue
—|-Threads
—|-id: 0x200012B4, osRtxldleThread
¢ State
? Priority
¢ Attributes
+-Stack
Flags
—|-id: 0x20000010, Thread
¢ State
Priority
Attributes
+-Stack

LU S L R SR SR S

Flags
= -id: 0x20000130, app_main
¢ State
Priority
¢ Attributes
+-Stack
¢ Flags

This debug view shows all the running threads and their current state. At the moment we have three
threads which are app_main, osRtxldleThread and Thread.

This window is a component view which shows key variables in a software library (component). It is
generated by an XML file. It is possible to create such a view for key variables in your application code.
This is very useful if you have a long term project or code that you are going to give to a third party.

Exit the debugger

While this project does not actually do anything it demonstrates the few steps necessary to start

using CMSIS-RTOS2.

Value

RTXV3.1.0
osKernelRunning
453

1000

72000000

3

5

Base: (20000000, Size: 4096
Enabled
Disabled

200

Size: 16, Used: 0

osThreadReady, osPriontyldle
osThreadReady

osPriorityldle

osThreadDetached

Used: 32% [64]

000000000

osThreadReady, osPriorityMNormal
osThreadReady

osPricrityMarmal
osThreadDetached

Used: 32% [64]

0x00000000

osThreadRunning, esPriorityMermal
osThreadRunning
osPriorityMermal
osThreadDetached

Used: 0% [0]

0x00000000

Fig 16 The RTX5 component
viewer

