
Exercise 8 Idle Thread

 In the Pack Installer select “Ex 8 Idle” and copy it to your tutorial directory.

This is a copy of the virtual timer project.

Open the RTX_Config.c file and click the text editor tab

Locate the idle thread

 __NO_RETURN void osRtxIdleThread (void *argument){

 for (;;) {

 //wfe();

 }}

Build the code and start the debugger

Run the code and observe the activity of the threads in the event Viewer.

This is a simple program which spend most of its time in the idle demon so this code will be run almost
continuously

Open the View → Analysis Windows → Performance Analyzer.

This window shows the cumulative run time for each function in the project. In this simple project the
idle thread is using most of the runtime because there is very little application code.

Exit the debugger

Remove the delay loop and the toggle instruction and add a __wfe() instruction in the for loop, so
the code now looks like this.

 __NO_RETURN void osRtxIdleThread (void *argument){

 for (;;) {

 __wfe();

 }}

Rebuild the code, restart the debugger

Fig 33 The performance analyser
shows that most of the run time is
being spent in the idle loop

Now when we enter the idle thread the __wfe() (wait for event) instruction will halt the CPU until
there is a peripheral or SysTick interrupt.

Performance analysis during hardware debugging

The code coverage and performance analysis tools are available when you are debugging on real
hardware rather than simulation. However, to use these features you need two things: First, you need
a microcontroller that has been fitted with the optional Embedded Trace Macrocell (ETM). Second,
you need to use Keil ULINKpro debug adapter which supports instruction trace via the ETM.

Fig 34 The __wfe() intrinsic halts
the CPU when it enters the idle
loop. Saving cycles and runtime
energy

