ANALOG
DEVICES

AHEAD OF WHAT'S POSSIBLE™

ADuCM302x Device Family Pack User's
Guide for CCES

ADuUCM302x Device Family Pack User's Guide for CCES © 2018 Analog Devices, Inc.
Version 3.1.0, August 2018 http://www.analog.com

http://analog.com

Contents

1 Introduction

11
1.2
13
14
15
1.6

Purpose

Scope of this Manual
Acronyms and Terms
Conventions

References

Additional Information
1.6.1 Manual Contents

2 Product Overview

2.1
2.2

Software System Overview
Hardware System Overview

3 Installation Components

3.1

3.2

3.3

CCES Project Support Files
3.1.1 OpenOCD Scripts
3.1.2 Linker Scripts
CCES Project Options
3.2.1 Tool Settings

3.2.2 Processor Settings
3.2.3 RTE Configuration
Debug Configurations

3.3.1 Target

3.3.2 Debugger

3.3.3 Limited Hardware Breakpoints

4 ADuCM302x System Overview

4.1 Block Diagram and Driver Layout

4.2

Boot-Time CRC Validation

5 Application Configuration

51
5.2
53
5.4
5.5

Application Initialization
Static Pin Multiplexing

UART Baud Rate Configuration Utility

Driver Include Files
Driver Configuration
5.5.1 Global Configuration

5.5.2 Configuration Defaults
5.5.3 Configuration Overrides

5.5.4 IVT Table Location
5.5.5 Interrupt Callbacks

6 Device Driver APl Documentation

6.1 Device Driver APl Documentation

6.2

O 0 0O N ~NO O O & B b

W W W W W W W W WMNDNDNDNDNDNDNDMNDNMNDNDNMNDNNMNDNREPEERELRERERPREPRERPR,
A A PP PP OOOCOOLONOOOOOOGPABIENPREPOOOOOOPRRWWDNDNDNDN

6.3 Appendix
6.3.1 CMSIS
6.3.2 Interrupt Vector Table
6.3.3 Startup_<Device>.c Content
6.3.4 System_<Device>.c Content

34
34
35
36
36

1 Introduction

1.1 Purpose

This document describes how to use the ADUCM 302x Device Family Pack (DFP) with CrossCore
Embedded Studio (CCES). The ADUCM302x processor integrates an ARM Cortex-M3
microcontroller with various on-chip peripherals within a single package.

1.2 Scope of this Manual

This document describes how to install and work with the Analog Devices ADUCM302x DFP.
This document explains what is included with the pack and how to configure the software to run
the exampl e applications that accompanies this package.

This document is intended for engineers who integrate ADI’ s device driver libraries with other
software to build a system based on the ADUCM 302x processor. This document assumes
background in ADI’s ADUCM 302x processor.

ADuUCM302x Device Family Pack User's Guide for CCES
August 2018

1.3 Acronyms and Terms

ADI Analog Devices, Inc.

API Application Programming Interface

ARM Advanced RISC Machine

CCES CrossCore Embedded Studio

CMSIS Cortex Microcontroller Software Interface Standard
Cortex A series of ARM microcontroller core designs
CRC Cyclic Redundancy Check

DFP Device Family Pack

HRM Hardware Reference Manual

ISR Interrupt Service Routine

IVT Interrupt Vector Table

JTAG Joint Test Action Group

NVIC Nested Vectored Interrupt Controller

RISC Reduced Instruction Set Computer

RTE Run-Time Environment

RTOS Real-Time Operating System

TRACE Debugging with TRACE access port

ADuUCM302x Device Family Pack User's Guide for CCES
August 2018

1.4 Conventions

Throughout this document, we refer to three important installation locations. the CCES toolchain
installation root, the ADUCM302x DFP root and the ARM CMSIS root. Each of these packages
can be installed in various places, which are referred to as follows:

® <cces_root>

* The default CCES installer places the product at location C. / Anal og Devi ces
/ CrossCor e Enmbedded Studi o x.y.z under Windowsand/ opt / anal og
/ cces/ x.y. z under Linux, but the install location may vary depending on user
preferences. Where x.y.z is the version of CrossCore Embedded Studio (e.g. 2.6.0)

* The default packs are placed at location <cces_r oot >/ ARM packs
/ Anal ogDevi ces. Therewill be the following folder for ADuCM302x within that
location called ADUCMB02x_ DFP.

* <ADUCM302x_r oot >

* Thedirectory <cces_r oot >/ ARM packs/ Anal ogDevi ces
[ADUCMB02x_DFP/ x. y. z which contains the content of the Analog Devices
ADuUCM302x DFP.
Where x.y.z isthe version of the Device Family Pack (e.g. 2.0.0)

* <ARM CMBI S _root >

® Thedirectory <cces_r oot >/ ARM packs/ ARM CVSBI S/ 4. 5. 0 which contains
the content of the ARM CM SIS pack.

1.5 References

1. Analog Devices: <ADUCMB02x_r oot >/ Docunent s
a. ADUCM302x_DFP_X.Y.Z_Release Notes.pdf
b. ADUCM302x_DFP_Device Drivers UsersGuide.pdf
c. ADUCM302x_DFP_UsersGuide_CCES.pdf (this document)

d. ADUCM302x Device Drivers APl Reference Manual (Documents/ ht m and
hyperlinked)

ADuUCM302x Device Family Pack User's Guide for CCES 6
August 2018

2. For CrossCore Embedded Studio (CCES) [http://www.anal og.com]
a. In CCESIDE, open Hel p- >Hel p Cont ent s: CCES on-line help.
i. CrossCore Embedded Studio documentation
i. CMSIS C/C++ Development User's Guide

b. <cces_r oot >/ Docunent s: Release notes.

3. The Definitive Guide to the ARM CORTEX-M3, Joseph Yiu, 2" edition.
* Every Cortex programmer’s bible; a must-have reference.

4. Micrium [http://micrium.com]
a. UC/OS-I1 RTOS for ARM Cortex-M3
b. uC/OS-11 User's Manual

5. ICE-1000 or ICE-2000 Emulator [http://www.anal og.com]

6. ARM CMSIS pack [www.kell.com/cmsis/pack]

1.6 Additional Information

For more information on the latest ADI processors, silicon errata, code examples, development
tools, system services and devices drivers, technical support and any other additional information,
please visit our website at www.anal 0g.com/processors.

1.6.1 Manual Contents
® Product Overview
® |nstallation Components
* ADuUCM302x System Overview
® Build Configurations
* Examples

® Device Driver APl Documentation

ADuUCM302x Device Family Pack User's Guide for CCES
August 2018

http://www.analog.com
http://micrium.com/
http://www.analog.com
http://labrea.ad.analog.com/confluence/www.keil.com/cmsis/pack
http://www.analog.com/processors
http://labrea.ad.analog.com/confluence/display/DOCBSPCM302XCCES/.Product+Overview+v1.0.3
http://labrea.ad.analog.com/confluence/display/DOCBSPCM302XCCES/.Installation+Components+v1.0.3
http://labrea.ad.analog.com/confluence/display/DOCBSPCM302XCCES/.ADuCM302x+System+Overview+v1.0.3
http://labrea.ad.analog.com/confluence/display/DOCBSPCM302XCCES/.Build+Configurations+v1.0.3
http://labrea.ad.analog.com/confluence/display/DOCBSPCM302XCCES/.Examples+v1.0.3
http://labrea.ad.analog.com/confluence/display/DOCBSPCM302XCCES/.Device+Driver+API+Documentation+v1.0.3

2 Product Overview

2.1 Software System Overview

The ADUCM302x Device Family Pack (DFP) provides files which are needed to write application
software for the ADUCM302x processor. The product consists of a boot kernel, startup, system and
driver source code, driver configuration settings, driver libraries, sample applications and
associated documentation (see Figure 1. Software Overview).

The ADUCM302x DFP is designed to work with CrossCore Embedded Studio in CM SIS pack
format for ARM.

Boot Kernel

System and Startup Code CCES Run-Time Libraries

ADuCM302x

R System Overview
Application

/

Pin Multiplexing

Driver and Service Libraries Driver Configuration Settings

Figure 1. Software Overview

2.2 Hardware System Overview

The examples provided with the ADuCM 302x DFP run on the Analog Devices ADUCM 302x-EZ-
Board evaluation board. The evaluation board is connected to the host computer using an | CE-1000
or ICE-2000 emulator over the evaluation board’ s debug port interface connectors. External 1/0
signals and system hardware are connected to the evaluation board connectors (see Figure 3.
ADUCM302x Evaluation Board with ICE-1000 and Figure 5. ADUCM302x Evaluation Board with

| CE-2000).

ADuUCM302x Device Family Pack User's Guide for CCES 8
August 2018

If ICE-1000 is used, an adapter is required to connect ADUCM 302x EZ-Board and |CE-1000 (see
Figure 4. Adapter for |CE-1000).

USB-UART

ADuCM302x Ez

: \ Board
y

Figure 2. Hardware Overview

ADuCM302x Device Family Pack User's Guide for CCES
August 2018

USB - UART

| 1CE_1000

Figure 3. ADUCM 302x Evaluation Board with | CE-1000

Adapter

ADuUCM302x Device Family Pack User's Guide for CCES
August 2018

10

Figure 4. Adapter for CE-1000

USB - UART

POWER SUPPLY
ICE-2000

Figure5. ADUCM 302x Evaluation Board with | CE-2000

ADuCM302x Device Family Pack User's Guide for CCES
August 2018

11

3 Installation Components

CrossCore Embedded Studio 2.6.0 http://www.anal og.com/cces or later must be purchased and
installed prior to installing the ADUCM 302x Software Package. Follow the instructionsin the
CrossCore Embedded Studio (CCES) product installation procedure.

The ADUCM302x pack contents (startup code, device drivers, libraries, examples, tools,
documentation, etc.) are placed at <cces_r oot >/ ARM packs/ Anal ogDevi ces
/ ADUCVB02x_DFP/ x. y. z.

| |

-

v Cormputer » DRIVE_C (T v Analog Devices » CrossCore Embedded Studio 251 » &RM » packs » AnalogDevices » ADUCKI0Z DFP » 200 »

= Open Include in library « Share with = Mew folder
Marme . Date modified Type Size
Docurnents 51972017 11:07 &kt File folder
Flash 501972017 1107 A File folder
Include 5/19/2017 11:08 &Akd File folder
License 51952017 11:08 Akt File folder
openacd 5/18/2017 11:08 &Akd - File folder
Source 51952017 11:08 Akt File folder
D 5/19/2017 11:08 Ahd - File falder
tools 51952017 11:08 Akt File folder
L AnalogDevicesADUChAI02:_DFP.pdsc 5/18/2017 11:07 &Akd - PDEC File 20 KB

Figure 6. Installation Directory Structure

3.1 CCES Project Support Files

This section documents the CCES-specific details of the ADUCM302x Device Family Pack. A
working knowledge of the CCES toolchain and environment is assumed. See the CCES reference
materials for details of installing, configuring and using the CCES tools. The following are the list
of important files added by the ADUCM302x Device Family Pack, necessary to build / run
applicationsin the CCES environment.

® OpenOCD scripts (.tcl & .cfg)
® Linker Scripts (.Id)

3.1.1 OpenOCD Scripts

OpenOCD supports ADUCM3027/9 targets from Analog Devices. These parts are supported
through the target config filesaducnB027. cf g and aducnB029. cf g. These two parts only
support SWD.

ADuUCM302x Device Family Pack User's Guide for CCES
August 2018

12

http://www.analog.com/cces

ADuUCM302x Device Family Pack User's Guide for CCES

Thetarget config fileis to package everything about a given chip that board config files need to
know (See ARM® Development Tools Documentation > OpenOCD User's Guide in CCES On-
line Help), which includes:

® Set defaults
* Add TAPsto the scan chain
* Add CPU targets (includes GDB support)
® CPU/Chip/CPU-Core specific features
® On-Chip flash
The <ADUCMB02x_r oot >/ openocd/ scri pt s/t ar get folder contains *.tcl and *.cfg files.
®* TheaducnB02x. t cl filedefinescommon routines for Analog Devices ADuCM302x.

®* TheaducnB027. cf g/ aducnB029. cf g files defines target-specific information and
includeaducnB02x. tcl .

3.1.2 Linker Scripts

The linker script maps sections from the input files into the output file, and controls the memory
layout of the output file (See ARM® Development Tools Documentation > Cortex-M > Binutils
Linker Manual > Linker Scriptsin CCES On-line Help).

The <ADUCM302x_r oot >/ Sour ce/ GCCfolder contains *.ld files.
The ADUCVB027. | d/ ADUCM3029. | d files configure:

* Memory regions

® Library group

® Sections and symbol values

3.2 CCES Project Options

This section documents the CCES project options for ADUCM 302x processors. A working
knowledge of the CCES environment and CM SIS C/C++ development is assumed. See the CCES

reference materials for details of installing, configuring and using the CCES tools as well as
managing CM SIS packs.

13

August 2018

3.2.1 Tool Settings

CrossCore GCC ARM Embedded Assembler

This section allows the user to set any assembler flags, definitions and include search pathsto be
passed to the CrossCore GCC ARM Embedded Assembler during build. Definitions and include
paths can be set from the Preprocessor sub-section as shown in Figure 7. CrossCore GCC ARM

Embedded Assembler - Preprocessor below.

File Edit Source Refactor Navigate Search Project Run Window Help
o~ [® &/~ @ FvQv® F v vEH v evyay QuickAccess 5 | [EIC/C+) @8 CMSIS Pack Manager
[y Project Explorer 83 = =8 e
7 Properties for HelloWorld =] % |
4 &5 HelloWorld ¢ 12 e
+ i Includes .
type filter text Settings ML
“@sic 5
= Helloworld » Resource
> [£ HelloWorld.c Build 4 1 CrossCore GCC ARM Embedded Assembler Preprocessor definitions (-D): aaar sl |-
. uilders 4 | CrossCore Embedded Studio 2.5.1
B reloworan e Bl & General
4 ¢/C++ B _RTE_
4 (2 system Build Variables & Preprocessor __ADUCM3029__ Al J et
» [8 adi_initializec Environment & Additional Options _SILICON_REVISION_ =0xffff > 1L amn-none-gabi
> [8 adi_initializeh Logain 4 1 CrossCore GCC ARM Embedded C Compiler > gee-amn-ernbedded
+ BRI Se?{lgngf & General > 0l openocd
“ & Device W, (5 Preprocessor 4)l packs
4 & ADUCM3029 emnes (= Warnings Downlaad
» [adi_global_configh [A » C/C++ General = Additionsl Options Preprocessor undefines {-U) a e
B Project References il
» [8 startup_ADuCM3029.c : 4 1 CrossCore GCC ARM Embedded C Linker | 4) AnalogDevices
Run/Debug Settings g
+ [system_ADUCM3029.€ (& General 1L ADUCMAXSI_DFP
ADUCM3029d [Analo: & Libraries 2 ADUCMS sn-sz [
>) ADuCMae
» [B RTE_Components.h &2 Additional Oy o
- ptions
El Readme_HelloWorld.oct + 8 ADuCMN DR
& system.rteconfig <20
T systemsve Additional include directories (-D: FEEEEIRE 2|_) D B
=] Flash
" ${workspace_loc/${ProjName}/system}” Lt
"§{cmsis_pack_root}/ARM/CMSIS/4.5.0/CMSIS/Include” I > Include
“${cmsis_pack_root}/AnalogDevices/ADUCM302x_DFP/L.04/Include” T License
"${workspace_loc/${ProjName}}/RTE" openocd
“${workspace_loc/${ProjName}}/RTE/Device/ADUCM3029" s @ Source
D
"] Do not include ADI header files (-mno-adi-include) tools
Additional include directories (-l): > 2 ADuCM302 EZ KT BSP
Specify the pathnames of additional directories where the preprocessor
should search for include files. Each pathname is passed to the compiler
B using the compiler's -I command-line switch,
cll| « I » Z
ull 5
P
i |
il v«

2 Helloworld

Figure 7. CrossCore GCC ARM Embedded Assembler - Preprocessor
Additional assembler options can also be added from Additional Options sub-section.

CrossCore GCC ARM Embedded C Compiler

This section allows user to set any compiler flags, definitions, include search paths and
optimization levels to be passed to the CrossCore GCC ARM Embedded C Compiler during build.

Optimization levels can be set from General sub-section as shown in Figure 8. CrossCore GCC
ARM Embedded C Compiler - General below.

ADuUCM302x Device Family Pack User's Guide for CCES
August 2018

.7 Properties for HelloWorl

type filter text

Settings

| > Resource
Builders
4 C/C++ Build
Build Variables
Environment
Logging
Settings
Warnings
» C/C++ General
Project References
Run/Debug Settings

4 i CrossCore GCC ARM Embedded Assembler
& General
2 Preprocessor
2 Additional Options
4 & CrossCore GCC ARM Embedded C Compiler
|¢% General|
& Preprocessor
& Warnings
& Additional Options
4 i CrossCore GCC ARM Embedded C Linker
General
& Libraries
% Additional Options

I i | »

|1 Enable optimization
Cptimization level Optimize for debugging experience (-Og) ~

Generate debug information (-g)

Debug information format (-gdwarf) | DWARF v2 (-gdwarf-2) -

[[] save temporary files (-save-temps)
Prepare code for linker elimination/garbage collection (-ffunction-sections)
Prepare data for linker elimination/garbage collection (-fdata-sections)

Debug information format (-gdwarf) -

Generate debug information in DWARF v2 (or later) format. For general
debugging in CrossCore Embedded Studio it is advisable to leave this set to
DWARF v2. You may want to set it to a later DWARF version only if you're seeing
performance issues while debugging with GDB.

m

@

o |[conce

Figure 8. CrossCore GCC ARM Embedded C Compiler - General

Preprocessor definitions, undefines and Include search paths can be set from Preprocessor sub-

section as shown in Figure 9. CrossCore GCC ARM Embedded C Compiler - Preprocessor below.

ADuCM302x Device Family Pack User's Guide for CCES

August 2018

15

.7 Properties for HelloWorl =k

type filter text Settings T T
|| > Resource
Builders 4 % CrossCore GCC ARM Embedded Assembler Preprocessor definitions (-DJ: 28 8 4 % m
)

4 C/C++ Build < General
Build Variables ¢ Preprocessor _ADUCM3029_
Environment (2 Additional Options _ _ SILICOM_REVISIOM__=0xffff

. 4 i CrossCore GCC ARM Embedded C Compiler

Logaing B | | |
Settings |ZE“$|
Warnings (22 Preprocessor

Warnings
(# Additional Options
4 i% CrossCore GCC ARM Embedded C Linker
= General
2 Libraries
(# Additional Options

» C/C++ General
Project References
Run/Debug Settings

Preprocessor undefines (-U): (= A= R

Additional include directories (-I: 88 | 5 &

111

"${workspace_loc;/${ProjName}/system}”

"${cmsis_pack_root}/ARM/CMSIS/4.5.0/CMSIS/Include”

"${cmsis_pack_root}/AnalogDevices/ADuCM302x_DFP/1.0.4/Include”
{workspace_loc/${ProjName}}/RTE"
{

)
"${workspace_loc;/${ProjName}}/RTE/Device/ADUCM3029"

[] Do not include ADI header files (-mno-adi-include)
Do not include ADI header files (-mno-adi-include) -

Do not include any header files provided by Analog Devices. This corresponds to
the -mno-adi-include compiler switch.

@ ok]

Cancel

Figure 9. CrossCore GCC ARM Embedded C Compiler - Preprocessor

Additional compiler options can also be added from Additional Options sub-section.

CrossCore GCC ARM Embedded C Linker

This section allows the user to set the path for the linker script file (.1d file), to set whether to use
standard startup files or default libraries, and to set whether to enable linker elimination by the
CrossCore GCC ARM Embedded C Linker as shown in Figure 10. CrossCore GCC ARM
Embedded C Linker - General below.

ADuCM302x Device Family Pack User's Guide for CCES 16
August 2018

7 Properties for HelloWorld

Settings

|| > Resource
Builders
4 C/C++ Build
Build Variables
Environment
Logging
Settings
Warnings
> C/C++ General
Project References
Run/Debug Settings

Configuration: lDehug [Active]

'l IManage Configurations.

& Tool Settings ‘ {# Processor Settingsl # Build Step.sl Build Artifactl Binary Par.ser.sl @ Error Parser.s|

4 B CrossCore GCC ARM Embedded Assembler

& General
(& Preprocessor
@& Additional Options

4 & CrossCore GCC ARM Embedded C Compiler

(2 General

(& Preprocessor

(& Warnings

% Additional Options

4 & CrossCore GCC ARM Embedded C Linker

& General
@ Libraries
(# Additional Options

Custom linker script (-T) ${workspace_loc;/${ProjName}}/RTE/Device/ADuCM3029/ADuCM3029.1d

[Do not use standard start files (-nostartfiles)

[Do not use default libraries (-nodefaultlibs)

D Do not use startup or default libraries (-nostdlib)

[] strip all symbals (-s)

Enable linker elimination/garbage collection (-Wl,--gc-sections)

11

OK] l Cancel

Figure 10. CrossCore GCC ARM Embedded C Linker - General

Library search directories, additional objects, additional libraries, system maths library and semi-

hosting support (which supports I/O to the debugger console, by default it'sset to r di non. specs
that enables functionsin the C library, suchaspri nt f () and scanf ()) can be set from
Libraries sub-section as shown in Figure 11. CrossCore GCC ARM Embedded C Linker - Libraries

below.

ADuCM302x Device Family Pack User's Guide for CCES

August 2018

17

K,’ Properties for HelloWorld

I type filter text Settings CR AT
> Resource ‘
Builders i

4 CfC++ Build Configuration: [DebUQ [Active] '] [Manage Configurations...

Build Variables
Environment

® Tool Settings |§3 Pracessor Settingsl # Build Steps Build Artifactl Binary Parsers | & Error Parsers

Logging
Settin-gs 4 CrossCore GCC ARM Embedded Assembler Library search directories (-L): 40 8 4 ¥
Warnings & General

» Cf/C++ General
Project References
Run/Debug Settings

(& Preprocessor
Additional Options

4 i CrossCore GCC ARM Embedded C Compiler
2 General
(% Preprocessor
£ Warnings Additional objects: [AR=RAR]
(# Additional Options

4 & CrossCore GCC ARM Embedded C Linker
& General
& Libraries|
(% Additional Options

m

Additional libraries (-1): €408 F &

Link against system maths library (-Im)

Semihosting support [rdimon.specs -

Semihosting support -

Link against the system library that implements all system calls via the semihosting API
(-specs=rdimon.specs) or the system library that implements a set of default syscall stubs
(-specs=nosys.specs), or do not link against any system library that implements semihosting

@ oK | I Cancel

Figure 11. CrossCore GCC ARM Embedded C Linker - Libraries
Additional linker options can aso be added from Additional Options sub-section.

3.2.2 Processor Settings

This tab can show the Processor Family and Processor Type. The silicon revision of a project can
be set from Processor Settings tab as shown in Figure 12. Processor Settings below.

ADuCM302x Device Family Pack User's Guide for CCES 18
August 2018

[i=h

Q{T Properties far HelloWorld =2
type filter text Settings - - -
> Resource N
Builders sl
‘ 4 C/C++ Build Configuration: | Debug [Active] ~ | | Manage Configurations...
Build Variables
Environment .
Logging # Tool Settings | # Processor Settings ‘?‘ Build Steps Build Artifactl Binary Parsers | @ Error Parsers
Seiiingg Processar Family: ARM
‘Warnings

s C/C++ General Processor: |ADuCM3029

Project References Silicon Revision: [any 'I
Run/Debug Settings 10

m

® OK J [Cancel

Figure 12. Processor Settings

Noted that after changing the silicon revision in thistab, the related source filesin the project will
be regenerated.

Processor type cannot be set from this tab, you can refer to section RTE Confi guration -
Devi ce inthis documentation to see how to change the processor type of a project.

3.2.3 RTE Configuration

Run-Time Environment (RTE) Configuration editor allows user to manage software components,
devices, and packs in a project, which can be opened by double-clicking the syst em

rt econfi g inthe project. See the CMSIS C/C++ Development User's Guide in CCES On-line
Help for further information.

CMSIS and Devices components including drivers and services should be managed in syst em

rteconfi ginstead of syst em svc. To add or remove a component, check or uncheck the "
Sel . " column next to the component in syst em rt econf i g and save thefile.

CVBl S- CORE and St art up aswell asd obal Confi gurati on, whichisrequired by
St ar t up, should be added manually when create a new project in order to build successfully.

ADuCM302x Device Family Pack User's Guide for CCES
August 2018

Figure 13. system.rteconfig

RTE Configuration - Device
The Device tab of the RTE configuration editor provides the following functionality:
® Shows information about the current selected device for the project.
® Accessto the Software Pack URL and other documentation using hyperlinks.

® Usingthe Change. . . button to select a different device for the project.
17 ¢/c++ - HelloWorld/systemrteconig - CrossCore Embedded Studio - . e T " T "EERT)

File Edit Source Refactor Navigate Search Project Run Window Help

o &%~ & Q@ cEH e arD Quick Access & | (/G

[2 Project Explorer 2 =% Y = 0O |(¢systemrteconfig 33 =0|=
4 € Helloworld B Device @ &
& Includes
e Device: ADuCM3029
» & HelloWorld.c Family: 'ADuCM302x Series CPU: 'ARM Cortex-M3
» |8 HelloWorldh SubFamily: Max. Clock: 26 MHz
4 & system Vendor: Analog Devices Memory: 32 kB RAM, 256 kB ROM
alize Pack: AnalogDevices ADUCM302x_DFP.104 FPU: none
URL hitpi//www keil.com/dd2/analogdevices/aducm3029 Endian: Little-endian
Device data books: Description:
4 G5 ADUCM3029 ‘ The ADUCM302 is an ultra low-power integrated mixed-signal microcontroller system for
" B adi global configh [A o = =T tivity. The MCU system is based on an ARM Cortex(TM)-M3
B ~contigh 1 27 Select device ‘ i 2l peripherals, embedded SRAM and flash memory, and an
ADUCM3029.c < £
- fies clocking, reset and power management capability along
ADUCM2029.c | Select Device .
ADUCM30291d [Analoc Devic|| | Compatible boards:
» B RTE_Componentsh Bl ADUCM3029 EZ-BOARD
[Readme_HelloWorld.txt
& systemrteconia Device: ADUCM3029 oy ARM Cortex-M3
& systemsvc Vendor: Analog Devices Max. Clock: 26 MHz
Pack AnalogDevices ADUCM302x DFP.10.4 Memory: 32 kB RAM, 256 kB ROM
URL hitpy//www.keil.com/dd2/analogdevices/aducm3029 FPU: none -
Search: Endian: |Little-endian -
4 & Analog Devices
TCM302x SeTe
ADUCM3027
B, ADuCM3029 o MCU system is
based on an ARM Cortex(TM)-
M2 processor, a collection of
digital peripherals, embedded
SRAM and flash memory, and an
Components| Device Packs
[22 Problems &) Tasks @ Console 22 [Propertl (2 Cancel %P ME~-0-=0
CMSIS RTE console [HelloWorld]
Updating build settings
Project updated successfully
cill<
——— W T ——— - ———

Figure 14. RTE Configuration - Device
Noted that after changing the processor type, the related source filesin the project will be updated.

3.3 Debug Configurations

When creating a debug configuration for ADUCM302x processors, select "Application with GDB
and OpenOCD". The Debug Configurations window allows you to select the Interface (1CE-1000
or ICE-2000), Clock speed, to specify OpenOCD arguments or configure GDB.

3.3.1 Target

Create a debug configuration with "Application with GDB and OpenOCD". In the Target tab,
select "Target (processor)”, and select "Analog Devices ADUCM3027/9" in the drop-down list as
shown in Figure 15. Debug Configurations - Target below.

ADuUCM302x Device Family Pack User's Guide for CCES 20
August 2018

7 Debug Configurations

Create, manage, and run configurations

Specify and launch an application with GDB and OpenQCD

= —+|,
= *l H ¢~ Marme: HelloWorld Debug

fype filter text [E] Target . [E Main g3 Debugger| B Startup | B Source| £ Comman

L Application with CrossC
a | Application with GDB ar
I HelloWorld Debug bpenacd Browse. .
& Application with GDB ar
= Launch Group

Command:

@ Target (processor) () Board

| Analog Devices ADUCM302 v

Interface:

[.ﬂ\nalog Dewvices ICE-2000 Emulator v]

Clock speed:

Halt options
[T Halt peripherals on suspend

Argurments:

I |
4| [[I] 3

Rewert Appl
Filter matched 5 of 5 items ’ s] ’ PRy]

@' [Debug] [Cloze l

Figure 15. Debug Configurations - Tar get

3.3.2 Debugger

The Debugger tab allows you to configure GDB, as shown in Figure 16. Debug Configurations -
Debugger below.

ADuUCM302x Device Family Pack User's Guide for CCES

21
August 2018

7 Debug Cenfigurations
Create, manage, and run configurations
Specify and launch an application with GDE and QpendCD
= -+ o
= X | = Mame: HellaWorld Debug
bype filker text [Z] Target | [E] Main i Debugger . B Startup| & Source | Commaon
[+ Appl?catinn with CrossC GDE Setup
a | Application with GDB ar
& HelloWorld Debug BLB Commandt
pplication wi ar | cc-arm-embedded\binbarm-none-eahi- FOMMSE, ariahles...
I Application with GDB HCCES HOMERARMg beddedihiny bi-gdh B || variabl
[Launch Group
Rermote Target
| Use rermote target
ITAG Device: [Generic TCRAP -
Host narne or IP address: localhost
Part number: 1333
Force thread list update on suspend
|
Fi m 3
Rewvert Appl
Filter matched 5 of 5 iterns | | | £EY |
'/?j' [Debug] | Clase |

Figure 16. Debug Configurations - Debugger

3.3.3 Limited Hardware Breakpoints

After clicking Debug in the Debug Configurations window, a pop-up window will show, warning
you of the limitation of hardware breakpoints in the selected target. It will ask if you want to
remove the breakpoint setting command(s) from the Initialization Commands (See Figure 17.

Hardware Breakpoints Limited). It's recommended to select Y es, otherwise you may not be ableto
insert hardware breakpoint(s) during debugging.

ADuUCM302x Device Family Pack User's Guide for CCES 22
August 2018

F .
7 Hardware Breakpoints Limited @

The selected target only has 2 hardware breakpoint(s), One breakpoint is being set at
"rnain", One ar more are being set by the Ihitialization Cormrmands, You have reached
the maximurm number of available hardware breakpoints, Do you want to rermove the
breakpoint setting cormmand(s) frarm the Initialization Comrmands in the Startup tab?

Selecting "Mo" may result in "Cannot insert hardweare breakpoints" errars,

[[]Don't ask rne again

ves || No

Figure 17. Hardwar e Breakpoints Limited

ADuUCM302x Device Family Pack User's Guide for CCES
August 2018

23

4 ADuCM302x System Overview

4.1 Block Diagram and Driver Layout

The Peripheral Device Drivers and System Services installed with this software package are used
to configure and use various ADUCM302x on-chip peripherals. Figure 18. Peripherals and Driver
Source illustrates the available peripherals and interconnects on the ADUCM 302x processor and
corresponding source filesin the <ADUCVB02x _r oot >/ Sour ce directory.

The driver sources are located in the <ADUCMB02x_r oot >/ Sour ce directory. When you add a
new CM SIS driver or service component to your project, the necessary include search path
<ADUCMBO2x_r oot >/ | ncl ude will aso be added to the project's additional include
directories. See the section Cr ossCor e GCC ARM Enbedded C Conpiler —
Preprocessor inlnstal |l ati on Conponent s of thisdocument for more information.

4 2.0.0
Documents
Flash
Include
License
openocd
- Source

ARM 26 MHz CORE RATE

4 drivers
e [P] [seriacwire INSTRUCTION
<":> RAMICACHE

beep (32 KB) —

ARM
z:pw corTEXM3 () %1555 =) [Fz];:s:a) MANAGEMENT
Corose] i
. wic | wic MATRIX (N SRAMO
— REF BUFFER MPY
== o
e CRYPTO
ma (AES 1281258,
e '/ | sHa256) | [spoRt | [uarT | 1l [TMro |[mR1 |[rrco |[rict |
" ra ra o ST e o 7~ .
pi < AHB-APB)
sport o3 e BRIDGE O S O I O . O . V.
trnr procrammaste || SP][sp || s |[wc | [Rz || TRnG | [eeeper] opio |[wor |
ot CRC POLYNOMIAL

widt
J xint
GCC
LAR
WD

toals

Figure 18. Peripheralsand Driver Source

ADuUCM302x Device Family Pack User's Guide for CCES 24
August 2018

4.2 Boot-Time CRC Validation

The ADUCM302x system reset interrupt vector is hard-coded on-chip to execute a built-in pre-boot
kernel that performs a number of critical housekeeping tasks before executing the user provided
reset vector. Some of those tasks include initializing the JTAG/Serial-Wire debug interface and
validating flash integrity.

One of the primary tasks of the pre-boot kernel isto validate the integrity of the FlashO/Page0
region (first 2k of flash). Thisis done by comparing a pre-generated CRC code (embedded in the
executable code image at build-time) against a boot-time-generated CRC value of FlashO/Page0
using the on-chip CRC hardware. The Page0 embedded CRC signature is stored at reserved
location 0x000007FC.

ADuUCM302x CCES support does not currently compute and implant the CRC signature into the
executable during the target build process (as a post-link build command). Therefore at boot time,
when the kernel computes a run-time FlashO/Page0 CRC value using the on-chip CRC hardware
and compares it against the value at the last CRC page, by default applications are built to omit the
CRC check.

ADuUCM302x Device Family Pack User's Guide for CCES 25
August 2018

5 Application Configuration

Application initialization and configuration will vary depending on the chosen operating mode.
The modes of operation include:

* Non-RTOS
® Theapplication is built without an RTOS.
* RTOS

* Theapplication is built with an RTOS. In this mode of operation the drivers can be
RTOS-Aware or RTOS-Unaware.

* RTOS-Aware Drivers

* Inthis C-Macro controlled mode of operation the driver’s source code will
include the following features:

® Interrupt Service Routines (ISR) with RTOS API calls used to
potentially cause atask context switch.

® Semaphores control communication between task-level code and ISR
level code.

* Mutexes control access to access to shared resources.

* RTOS-Unaware Drivers.

* |nthis C-Macro controlled mode of operation the driver’s source code will not
include the features listed above.

5.1 Application Initialization

The function adi_initComponents() is used to initialize an application. adi_initComponents() is
required to initialize the managed drivers and/or services that have been added to the project, in
which adi_initpinmux() is required to initialize the periphera pin multiplexing, if static pin
multiplexing isused (seesection St ati ¢ Pin Mil ti pl exi nginBuild

Confi gurati ons). Figure 19. Application Initialization and Figure 20. adi_initComponents()
below shows adi_initComponents() being called from the user application main() and
adi_initpinmux() being called from adi_initComponents().

int main(int argc, char *argv[])

{

/**

ADuUCM302x Device Family Pack User's Guide for CCES 26
August 2018

* Initialize managed drivers and/or services that have been
added to

* the project.

* @eturn zero on success

*/

adi _i ni t Conponent s();

/* Begi n addi ng your custom code here */
return O;

Figure 19. - Application Initialization

int32_t adi _initConmponents(void)

{

int32_t result = 0;

if (result == 0) {

result = adi __initpinmux(); /* auto-generated code (order:Q0)

*/

}

return result;
}

Figure 20. - adi_initComponents()

5.2 Static Pin Multiplexing

The Pin Multiplexing Add-in is recommended by default when creating a CCES project for
ADuUCM302x; the Add-in is capable of generating code to set all the port MUX registers statically
for all peripheralsinasingle call. It also can be added to the project from system.svc.

After adding the Pin Multiplexing Add-in, you can configure the add-in to generate C source by
opening the system.svc file and selecting the Pi n Mul t i pl exi ng tab. The add-in will not alow
conflicting peripherals to be selected. After doing save, a C sourcefile (pr oj ect _nane

/ syst ent pi nnmux/ Gener at edSour ces/ pi nnux_confi g. ¢) will be generated
automatically which sets the GPIO port configuration registers based on the peripherals and
functions selected. The C source file has afunction adi_initpinmux() which can be called from
adi_initComponents() (see Figure 21. Pin Multiplexing Add-in) to set up the port MUX registers.

ADuUCM302x Device Family Pack User's Guide for CCES 27
August 2018

example/system.svc &2
Pin Multiplexing @

Pin Multiplexing Signal Selection

Select the peripheral signals that you want to enable. If you would like to configure the pins by specifying values to be directly written to
the appropriate registers, click the Register Values button below. When you save your changes, the pinmux_config.c file in your project
will be re-generated.

Peripherals “ || GPIO Reagister Values...
> DI}E} SPIO0 [SPI0 Module] - M3 PO |
. . Restore Defaults...

» [|4i SPIL [SPI1 Module] - B3 P1

» [4i SPI2 [SPI2 Module] > B P2

; DD{} 12C0 [12C0 Module]

; DIII-{} GPIO [Port0 and Portl GPIO]

» || BEEPER [Beeper Module]

; Dl}ti UARTO [UARTO Module]

; DD{} SPORTO_A [SPORTO_A Module]

> DI}E} SPORTO_B [SPORTO_B Module] -

m

Conflict Details

[Overview | Pin Multiplexing

Figure 21. Pin Multiplexing Add-in

Note: The pinmux code generator isthe preferred method of configuring port multiplexing. It
avoids multiple dynamic callsto each driver and allows all pin multiplexing to be done once,
which reduces both footprint and run-time overhead.

5.3 UART Baud Rate Configuration Utility

Included with the ADUCM302x Device Family Pack isaUar t Di vCal cul at or command line
utility which computes the baudrate configuration values for a specified clock. This helps you to
statically configure the Baudrate. The utility can also provide the baudrate configuration values for
aset of baudrates.

The output can be used in the UART baudrate configuration API, as

ADI UART_RESULT adi uart_Confi gBaudRat e(ADI _UART_HANDLE const
hDevice, uint1l6_t nDivC, uint8 t nDivM uintl6_t nDivN, uint8_t nOSR

),

Where;

ADuUCM302x Device Family Pack User's Guide for CCES 28
August 2018

To produce the baudrate configuration values for a specified clock and the whole set of baudrates:

hDevice isthe device handle to UART device obtained when an UART device opened
successfully

nDivC isDl V- Cinthe output of Uar t Di vCal cul at or utility
nDivM is DI V- Min the output of Uar t Di vCal cul at or utility
nDivN isDI V- Nin the output of Uar t Di vCal cul at or utility
NOSR is OSRin the output of Uar t Di vCal cul at or utility

Uart Di vCal cul at or. exe i nput_cl ock

To produce the baudrate configuration values for a specific clock and a particular baudrate:

Uart Di vCal cul at or. exe input_cl ock baudrate

For example, to get the baudrate configuration values for input clock 16 MHz and baudrate 9600,
run the following command line:

Uart Di vCal cul at or. exe 16000000 9600

and you will get

| CALCULATING UART DIV REGISTER UALUE FOR THE INPUT CLOCK: 16000000

5.4 Driver Include Files

InTool Settings of the Propertiesfor aproject, the Addi ti onal i ncl ude
directories (-1) sectionof theCrossCore GCC ARM Enbedded C Conpil er >
Pr epr ocessor tabisused to define the additional include directories needed to build the
project. The device drivers only require the following search paths

<ADUCMBO2x_r oot >/ I ncl ude
<ARM CMSI S r oot >/ CVSI S/ | ncl ude

ADuUCM302x Device Family Pack User's Guide for CCES
August 2018

29

which are added by CM SIS components automatically. Applications may need to augment the
preprocessor search path with their own requirements.

5.5 Driver Configuration

Most of the drivers are statically configurable. Their configuration is controlled via C/C++ pre-
processor macros that are managed in a common area.

Static initialization is preferred, asit offers two advantages over dynamic (API) initialization:

1. It reduces the run-time driver startup time (and complexity) of initializing each driver
through various driver configuration APIs.

2. It alows programmers to bypass most of the driver configuration APIs atogether, thereby
allowing linker elimination to remove unused driver APIs, thereby reducing overall
footprint.

5.5.1 Global Configuration

Thereisasingle, global configuration file <ADUCMB02x_r oot >/ | ncl ude/ confi g

[adi _gl obal _confi g. h, whichwill be copied to the local project directory automatically
after adding the d obal Confi gurati on CMSIS component. We recommend using the same
approach for overriding the driver-specific configuration files as described below to override the
global feature set-up (See more about configuration overrides in the sections below). For example,
to overwrite the RTOS feature, set the corresponding macroinadi _gl obal _config. htoOas
shown in Figure 22. Global Configuration File Contents below:

/*! Set this macro to 1 to enable multi-threaded support */
#defi ne ADI _CFG ENABLE RTOS _SUPPORT 0

Figure 22. Global Configuration File Contents

5.5.2 Configuration Defaults

Two distinct types of configurations are managed in the driver configuration files: feature/function
enable/disable (such as removing unneeded code for slave-mode operation, DMA support, etc.) and
default values for the peripheral control registers. Each device driver uses these macrosto control
feature inclusion and set controller registers during driver initialization.

Factory default driver configuration files (one per driver) are located in the <ADUCVBO2X_r oot >
/1 ncl ude/ confi g directory, which will be copied to your local project directory automatically
after adding the driver component so you can edit for localized changes.

ADuUCM302x Device Family Pack User's Guide for CCES 30
August 2018

5.5.3 Configuration Overrides

In summary, there are two ways to override the default static configuration values:

1. Local edits can be applied.

2. Dynamically by using the dynamic APIsto modify the configuration at run time. The
configuration APIs may be called at run-time to alter adriver’s configuration. Static
configuration is preferred, however, as it will save both footprint and run-time cycles.

Please note that a combination of static and dynamic configuration is possible.

5.5.4 IVT Table Location

The Cortex-M 3 processor core allows the Interrupt Vector Table (IVT) to be relocated. In this
release, we support a default placement of the IVT in ROM (FLASH) and alow it to be moved
from ROM to RAM during system startup. The pre-processor macro RELOCATE_IVT isused to
enable IVT relocation.

The default, statically-linked IVT placement in ROM is preferred as it will avoid wasting RAM
space and startup time to relocate the table. The static IVT cannot be used if the application needs
to ater the IVT content.

Alternatively, the IVT may be dynamically relocated during system startup from ROM to RAM for
applications that need to modify the IVT content. For example, by dynamically hooking/replacing
interrupt handlers or running an RTOS that requires patching interrupt handlers through a common
interrupt dispatcher. To support dynamic IVT relocation, add the RELOCATE_IVT macro to the
compiler pre-processor option tab. Doing so causesthe IVT to be relocated during system reset
(see startup.c: Resetl SR() handler).

The default static IVT is aways present in ROM and is optionally copied to RAM under control of
the RELOCATE_IVT macro. Seerelevant source code in system files startup.c and system.c
(enclosed within the RELOCATE_IVT macro) for implementation details of the relocated IVT
memory allocation, relocation address and alignment attributes, physically copying the IVT and
updating the interrupt vector table offset register (VTOR) within the Cortex-M 3 core System
Control Block (SCB). Oncethe IVT iscopied and VTOR iswritten with the new address, the
relocated interrupt vectors are active and can then be modified dynamically.

5.5.5 Interrupt Callbacks

In general, the device drivers take ownership of the various device interrupt handlersin order to
drive communication protocols, manage DMA data pumping, capture events, etc. Most device
drivers also offer application-level interrupt callbacks by giving the application an opportunity to
receive event notifications or perform some application-level task related to device interrupts.

ADuUCM302x Device Family Pack User's Guide for CCES 31
August 2018

Application callbacks are optional. They may be an integral component of an event-based system
or they may just tell the application when something happened. Application callbacks are always
made in response to device interrupts and are executed in context of the originating interrupt.

To receive interrupt callbacks, the application defines a callback handler function and registersit
with the device driver. The callback registration tells the device driver what application function
call to make asit processes device interrupts. Each driver has unique event notifications which are
passed back with the callback and describe what caused the interrupt. Some device drivers support
event filtering that allows the application to specify a subset of events upon which to receive
callbacks.

To use callbacks, the application defines a callback handler with the following prototype:

voi d cbHandl er (void *pcbParam uint32_t Event, void *pArg);

Where:

® pcbParam is an application-defined parameter that is given to the device driver as part of
the callback registration,

* Event isadevice-specific identifier describing the context of the callback, and

® pArgisan optiona device-specific argument further qualifying the callback context (if
needed).

The application will then call into the device driver callback registration API to register the
callback, as:

ADI _xxx_RESULT_TYPE adi xxx_Regi sterCal |l back (ADI _xxx_DEV_HANDLE cons
t hDevi ce, ADI _CALLBACK const pfCallback, void *const pcbParan;

Where;
® xxx isthe particular device driver,
* hDeviceisthe devicedriver handle,

* ADI_CALLBACK isatypedef (seeadi _i nt . h), describing the callback handler
prototype (cbHandler, in this case),

* pfCallback isthe function address of the application’s callback handler (cbHandler), and

® pcbParam is an application-defined parameter that is passed back to the application when
the application callback is dispatched. This parameter is used however the application
dictates, it is ssimple passed back through the callback to the application by the device driver
as-is. It may be used to differentiate device drivers (e.g., the device handle) if multiple
drivers or driver instances are sharing a common application callback.

ADuUCM302x Device Family Pack User's Guide for CCES 32
August 2018

Note: Application callbacks occur in context of the originating device interrupt, so extended
processing at the application level will impact interrupt dispatching. Typically, extended
application-level processing is done by some task after the callback is returned and the interrupt
handler has exited.

ADuUCM302x Device Family Pack User's Guide for CCES
August 2018

33

6 Device Driver APl Documentation

6.1 Device Driver APl Documentation

Device drivers should be added to or removed from aproject insyst em rt econf i g instead of
system svc. Seelnstal | ati on Conponents > CCES Project Options > RTE
Confi gurati on sectionin thisdocumentation for further information.

Complete documentation for the DFPislisted in | nt r oducti on > Ref er ences section, at
the top of this document. Most of the documentation is provided in PDF format.

The API documentation for the device driversis availablein HTML format as shown in Figure 27.
Device Driver Documentation. The HTML documentation islocated in the <ADUCVB02Xx _r oot >
/ Docunent s/ ht ml folder.

To open the HTML documentation, double-click on the index.html file.

6.2

Figure 27. Device Driver Documentation

6.3 Appendix

6.3.1 CMSIS

The ADUCM302x Device Family Pack is compliant with the Cortex Microcontroller Software
Interface Standard (CM SIS). CM SIS prescribes a number of software organization aspects. One of
the more convenient aspects of the CM SIS compliance is the availability of various CMSIS run-
time library functions provided by the compiler vendor that implement many Cortex core access
functions. These CM SIS access functions are used throughout the ADuCM302x DFP device driver
implementation.

By wrapping up these Cortex core access functions into a compiler vendor library, the device
drivers and application programmer are able to access the Cortex core implementation in a safe and
reliable way. Examples of the CM SIS library access functions include functions to manage the
NVIC (Nested Vectored Interrupt Controller) interrupt priority, priority grouping, interrupt
enables, pending interrupts, active interrupts, etc.

ADuUCM302x Device Family Pack User's Guide for CCES 34
August 2018

Other CM SIS access functions include defining system startup, system clock and system timer
functions, functions to access processor core registers, "intrinsic” functions to generate Cortex code
that cannot be generated by 1SO/IEC C, exclusive memory access functions, debug output
functions for ITM messaging, etc. CM SIS also defines a number of naming conventions and
various typedefs that are used throughout the ADUCM 302x DFP.

Please consult The Definitive Guide to the ARM Cortex-M3 seel nt r oducti on >
Ref er ences section in this documentation or the www.arm.com website for complete CMSIS
details.

6.3.2 Interrupt Vector Table
The IVT isa32-bit wide table containing mostly interrupt vectors. It consists of two regions.

® Thefirst sixteen (16) locations contain exception handler addresses. The highest |ocation of
these addresses have fixed (pre-determined) priorities.

® The balance of the IVT contains peripheral interrupt handler addresses which are not
considered exceptions. Each of the peripheral interrupts has an individually programmable
interrupt priority and they are therefore sometimes referred to as "programmable” interrupts,
in contrast to the non-programmable (fixed-priority) exception handlers.

The VT isdeclared and initialized inthe st art up_<Devi ce>. c file. The organization of the
first 16 locations (0:15) of the IVT is prescribed for ARM Cortex M-class processors as follows:

® |VTI[OQ] = Initial Main Stack Pointer Vaue (MSP register)

The very first 32-bit value contained in the IVT isnot an interrupt handler address at all. It is used

to convey aninitial value for the processor’s main stack pointer (M SP) to the system start code. It

must point to avalid RAM areain which the various reset function calls may have avalid stacking
area (C-Runtime Stack).

® |VT[1] = Hardware Reset Interrupt Vector

The second 32-bit value of the IVT is defined to hold the system reset vector. Thisis also defined
in startup_<Device>.c. Thelocation isinitialized with the reset interrupt handler function. When
the system starts up, it calls the function pointed to by thislocation (once the boot kernel is
complete).

® |VT[2:15] = Non-Programmable System Exception Handlers

These locations contain various exception handlers, e.g., NMI, Hard Fault, Memory Manager
Fault, Bus Fault, etc. All of these handlers are given weak default bindings within the startup.c file,
insuring all exceptions have a safe "trapping" implementation.

e Balanceof IVT Contains Interrupt Vectors for Programmable I nterrupts

ADuUCM302x Device Family Pack User's Guide for CCES 35
August 2018

http://www.arm.com/

Theremaining IVT entries are mapped by the manufacture to the peripherals. In the case of the
ADuUCM302x processor, there are 64 (0-63) such peripheral interrupts. Each peripheral interrupt
has a dedicated interrupt priority register that may be programmed at run-time to manage interrupt
dispatching.

6.3.3 Startup_<Device>.c Content

The <ADUCMB02x_r oot >/ Sour ce/ GCC/ st art up_<Devi ce>. c fileisrequired for every
ADuUCM302x application. Thisfileislargely defined by the CM SIS standard and contains:

® Stack and Heap set-up
® Interrupt Vector Table

6.3.4 System_<Device>.c Content

Thefile <ADUCM302x_r oot >/ Sour ce/ syst em <Devi ce>. ¢ isanother CM SIS prescribed
file implementing a number of required CM SIS APIs (Systeminit())

The system_<Device>.cfileisarequired and integral component for every ADUCM 302x
application.

* Systeminit()
Thisisaprescribed CM SIS startup function which is called by Reset Handler.

The first and most critical task performed during Systeminit() is the activation of the (potentially)
relocated IVT. Any IVT relocation is done during the system reset handler under control of the
RELOCATE_IVT macro. If the IVT has been moved, it must then be activated during
Systeminit() by setting the Cortex core "Interrupt Vector Table Offset Register” in the Cortex Core
System Control Block (SCB->VTOR) to the address of the new IVT.

Until the VTOR isreset, the default FLASH-based IVT remains active. The relocated IVT
activation must be done before the application starts activating peripheras, but after the relocated
IVT data has been copied.

Other important tasks performed during Systeminit() include bringing the clocks into a known
state, configuring the PLL input source, and making the initial call to SystemCoreClockUpdate()
(below), which must always be done (even by the application) after making any clock changes.

* SystemCoreClockUpdate()

Thisis another prescribed CM SIS API. The task performed here is to update the internal clock
state variableswithin syst em <Devi ce>. ¢ after making any clock changes. Thisinsures that
subsequent application calls to SystemGetClockFrequency() can return the correct frequency to
device drivers attempting to configure themselves for serial BAUD rate, etc., or otherwise query
the current system clock rate. SystemCoreClockUpdate() should always be called after any system
clock changes.

ADuUCM302x Device Family Pack User's Guide for CCES 36
August 2018

	Introduction
	Purpose
	Scope of this Manual
	Acronyms and Terms
	Conventions
	References
	Additional Information
	Manual Contents

	Product Overview
	Software System Overview
	Hardware System Overview

	Installation Components
	CCES Project Support Files
	OpenOCD Scripts
	Linker Scripts

	CCES Project Options
	Tool Settings
	CrossCore GCC ARM Embedded Assembler
	CrossCore GCC ARM Embedded C Compiler
	CrossCore GCC ARM Embedded C Linker

	Processor Settings
	RTE Configuration
	
	RTE Configuration - Device

	Debug Configurations
	Target
	Debugger
	Limited Hardware Breakpoints

	ADuCM302x System Overview
	Block Diagram and Driver Layout
	Boot-Time CRC Validation

	Application Configuration
	Application Initialization
	Static Pin Multiplexing
	UART Baud Rate Configuration Utility
	Driver Include Files
	Driver Configuration
	Global Configuration
	Configuration Defaults
	Configuration Overrides
	IVT Table Location
	Interrupt Callbacks

	Device Driver API Documentation
	Device Driver API Documentation
	
	Appendix
	CMSIS
	Interrupt Vector Table
	Startup_<Device>.c Content
	System_<Device>.c Content

