
© 2018 Analog Devices, Inc.

http://www.analog.com

Device Drivers User Guide

Version 1.0.0, August 2018

Device Drivers User Guide

http://analog.com

Contents

1 User Guide 3

1.1 Features Supported by Device Drivers 3

1.2 Device Driver Operating Modes 3

1.2.1 Blocking mode 4

1.2.2 Non-Blocking mode for all devices 4

1.2.3 Callback mode 4

1.3 Device Driver API Reference 5

1.3.1 Open/Close 6

1.3.2 Non-Blocking Mode APIs and Buffer Ownership 6

1.3.3 Non blocking buffer transaction APIs 7

1.3.4 Non-Blocking Peek Functions 9

1.3.5 Blocking Mode APIs 11

1.3.6 Switching Between Interrupt and DMA Mode 12

1.3.7 Using Callback Mode 13

1.3.8 Peripheral Error Reporting 15

1.4 Motivation for Avoiding Callbacks 16

Device Drivers User Guide
August 2018

3

1.

2.

3.

1 User Guide

This document provides the guidelines for using the Analog Devices device drivers included in the
Board Support Package. This document is specific to the bus drivers such as SPI, I2C, SPORT and
UART. The other drivers such as GPIO, Timers, Accelerometers does not follow a common API
model.

1.1 Features Supported by Device Drivers

The device drivers:

are simple to use;

have a minimal code and data footprint;

add minimal run-time overhead;

do not require memory copying between driver and application;

do not require dynamic memory allocation by Device drivers;

support switching between DMA mode and interrupt mode at run-time;

support reentrancy but are not thread safe (same instance of the driver cannot be used from
two different threads)

are MISRA-C 2012 compliant.

1.2 Device Driver Operating Modes

The drivers operate in one of three operating modes of interaction, which determine how the driver
and application interact:

Blocking mode. This mode is entered when a blocking API is called.

Non-Blocking mode. This mode is entered when a non-blocking API is called where no
callback is registered.

Callback mode. This mode is entered when a non-blocking API is called where a callback is
registered.

These modes are mutually exclusive with one another. An application is not allowed to mix these
modes. The modes are described in more detail in the following sections.

Depending on the peripheral, a driver may also have a choice of modes for internal operation:

Interrupt mode.

Device Drivers User Guide
August 2018

4

DMA mode.

These modes of internal operation are selected separately from the interaction modes of Blocking,
Non-Blocking and Callback mode.

1.2.1 Blocking mode

In blocking mode, a read or write call does not return until the read or write transaction has
completed.

When operating in an RTOS environment, a task will yield the processor when making a blocking
call. The RTOS will schedule in another task that is ready to run. The blocked task will be placed
back on the ready to run queue upon completion of the read or write transaction.

In a non-RTOS environment, there is only one thread of execution. A call to a blocking API will
result in the thread "spinning" (or simply, waiting) until the read or write transaction completes.

See for more information on entering blocking modeBlocking Mode APIs

1.2.2 Non-Blocking mode for all devices

In non-blocking mode, a read or write call does returns immediately, even if the read or write
transaction has not completed yet. The driver will finish the read or write transaction. It is the
application's responsibility to synchronize with the transaction completion.

The synchronization mechanism that the application must use is detailed in Non-blocking
. A driver is placed into non-blocking mode simply by calling Transactions and Buffer Ownership

the non-blocking read or write APIs when no callback is registered. See section Non-blocking
 for information about non-blocking read and write APIs.Transactions and Buffer Ownership

1.2.3 Callback mode

Similar to non-blocking mode, in callback mode, a read or write call returns immediately. It does
not wait for the transaction to complete. Unlike non-blocking mode, the synchronization
mechanism is an application-specified Callback. An application will pass a Callback to the device
driver to be called upon completion of a read or write transaction. The device driver executes the
callback to an application-specified routine when the read or write transaction completes or when
an error occurs.

A driver is placed into callback mode simply by registering a callback with the device driver. More
information on Callback mode can be found in .Using Callback Mode

Device Drivers User Guide
August 2018

5

1.3 Device Driver API Reference

The following section provides an overview of the device driver APIs. Each API will indicate to
which of the three operation modes the API is applicable. Some APIs can be used in all modes,
while others are specific to just one or two modes of operation.

Syntactic conventions used in this overview:

Each driver will have API names unique to the controller. For example,

adi_i2c_Open

is specific to the I2C controller while:

adi_spi_Open

is specific to the SPI controller. However, in this API overview, controller-independent syntax is
used to indicate that the API is applicable to all controllers. Therefore,

adi_xxx_Open

is used where the "xxx" implies that the API is applicable to all controller drivers.

A number of APIs that have receive and transmit versions of the APIs, indicated by "Rx" and "Tx"
in the API names, for example and . adi_xxx_GetRxBuffer adi_xxx_GetTxBuffer

When discussing common behavior of these APIs, the "Rx"/"Tx" portion is omitted, for example
.adi_xxx_GetBuffer

The following table shows which APIs are valid in the particular device driver operating mode.

 Blocking Non-Blocking Callback

adi_xxx_Read/Write Yes No No

adi_xxx_SubmitBuffer No Yes Yes

adi_xxx_GetBuffer No Yes No

adi_xxx_IsBufferAvailable No Yes No

adi_xxx_Close No Yes Yes

In the sequence diagrams, represents code executing at the interrupt level and blue orange
represents code executing at the thread level.

Device Drivers User Guide
August 2018

6

1.3.1 Open/Close

adi_xxx_Open

The open function opens the device and returns a to the device instance. The handle is an handle
abstract/opaque data structure that is unique to the instance of the controller that is being opened.
The instance of the controller is indicated by the parameter as shown below. The nDeviceNum

handle is then passed into all subsequent calls which allows the driver to know on which controller
instance the call is operating.

Each device driver requires memory to record information about the state of the driver. This
memory must be passed in from the application.The driver indicates the size requirements in the
API header file as shown below.

/* Memory required for the driver in terms of bytes */

 #define ADI_XXX_MEMORY_SIZE 100

 ADI_XXX_RESULT adi_xxx_Open (

 uint32_t nDeviceNum,

 ...

 void *const pDeviceMemory,

 uint32_t nMemorySize

 ADI_XXX_HANDLE const *phDevice

);

This API is valid for all modes.

adi_xxx_Close

This API closes the given device instance.

ADI_XXX_RESULT adi_xxx_Close (

 ADI_XXX_HANDLE const hDevice

);

This API is valid for all modes.

1.3.2 Non-Blocking Mode APIs and Buffer Ownership

All memory buffers for read and write transactions must be allocated by the application. The
drivers do not perform any dynamic memory allocation. When a read or write transaction is
initiated by an application, a memory buffer is passed to the driver.

Device Drivers User Guide
August 2018

7

In the case of a non-blocking transaction, the call to read or write returns immediately. The driver
completes the transaction asynchronously. While the driver is completing the transaction, the
driver owns the buffer.

The only mechanism to transfer buffer ownership from the driver back to the application is the
 API (there are Rx and Tx versions of the API). When an application calls adi_xxx_GetBuffer

this API, the application blocks until the transaction is completed by the driver. If the transaction
has already completed, the application returns from this call immediately, regaining ownership of
the buffer.

ADI_XXX_RESULT adi_xxx_GetBuffer (

 ADI_XXX_HANDLE const hDevice,

 void ** const ppBuffer,

 uint32_t * const pHwError

);

These APIs are valid for Non-Blocking mode only.

1.3.3 Non blocking buffer transaction APIs

The device drivers are designed to have a minimal footprint and minimal latency. The device
drivers do not maintain read or write buffer queues. They support only a ping pong buffer or single
buffer scheme depending upon the peripheral. The slow speed devices like i2c and SPI support
only one outstanding transaction at a time, peripherals like UART and SPORT support ping pong
buffer mode (up to two outstanding transaction at a time).

To use the device drivers in non-blocking mode and to stream data to or from the driver, an
application must allocate two buffers and then proceed to use them in the following ping pong
manner:

 // Pseudo-code

 adi_xxx_SubmitBuffer // transfer buffer to driver

 while (cond)

 {

 adi_xxx_SubmitBuffer // transfer buffer to driver

 adi_xxx_GetBuffer // will block until transaction complete

 // buffer is owned by application again

 // buffer processing

 }

Device Drivers User Guide
August 2018

8

adi_xxx_SubmitBuffer

This API initiates a read transaction by submitting a buffer for reading. The API transfers
ownership of the buffer to the driver. The driver retains ownership of the buffer until the
application calls .adi_xxx_GetRxBuffer

The drivers support up to two outstanding transactions at a time. If more than two transactions are
requested, this API returns an error indicating that too many transactions have been requested.

ADI_XXX_RESULT adi_xxx_SubmitBuffer (

 ADI_XXX_HANDLE const hDevice,

 void * const pBuffer,

 uint32_t const nBufSize,

 bool const bDMA

);

This API is valid for Non-Blocking and Callback modes.

adi_xxx_GetBuffer

This API permits an application to transfer buffer ownership from the driver back to the
application. The buffer is transferred back to the application only after the transaction that the
buffer is associated with has completed. If the transaction is not completed yet, the application
blocks until the transaction is completed. If the transaction has already completed, the API returns
immediately.

In an RTOS environment, waiting for a transaction implies yielding the processor to the next task
that is ready to run. In a non-RTOS environment, waiting for a transaction implies "spinning" or
simply polling for completion. In a non-RTOS environment "spinning" will prevent any other
useful work from occurring.

In a non-RTOS environment, to avoid waiting for completion, applications can use the non
blocking peek function , and (if the buffer is not available) adi_xxx_IsRxBufferAvailable

they can perform other tasks. (This API is also functional in an RTOS environment).

When a peripheral error is detected, this API returns immediately with an error indicating that a
hardware error has occurred. The actual hardware error(s) will be written into the user-provided
variable pointed to by pHwError, see , which explains how errors are Peripheral Error Reporting
reported.

ADI_XXX_RESULT adi_xxx_GetRxBuffer (

 ADI_XXX_HANDLE const hDevice,

 void ** const ppBuffer,

 uint32_t * const pHwError

Device Drivers User Guide
August 2018

9

);

This API is valid only for Non-Blocking mode.

The following sequence diagram shows how the non-blocking mode APIs are used to interact with
the device driver.

1.3.4 Non-Blocking Peek Functions

These APIs can be used to check if a free buffer is available without blocking. These functions can
be used (the whole CPU in the non-RTOS case or the task in the RTOS case) to avoid blocking
when the buffer is not available.

adi_xxx_IsBufferAvailable

Checks if the filled Rx buffer is available for processing.

Device Drivers User Guide
August 2018

10

ADI_XXX_RESULT adi_xxx_IsRxBufferAvailable(

 ADI_XXX_HANDLE const hDevice,

 bool * const pbAvailable

);

This API is valid only for Non-Blocking mode.

The following sequence diagram shows how the non-blocking mode APIs are used to interact with
the device driver when using peek functions.

Device Drivers User Guide
August 2018

11

1.3.5 Blocking Mode APIs

By calling these APIs, a driver will be placed into blocking mode. These APIs wait until the given
buffer is processed. These APIs are available only for low-speed devices, such as the UART, I2C,
and SPI controllers.

adi_xxx_Write

This API submits the given buffer for transmission and waits until it is transmitted.

When a peripheral error is detected, this API returns immediately with an error indicating that a
hardware error has occurred. The actual hardware error(s) will be written into the user-provided
variable pointed to by pHwError, see , which explains how errors are Peripheral Error Reporting
reported.

ADI_XXX_RESULT adi_xxx_Write (

 ADI_XXX_HANDLE const hDevice,

 void * const pBuffer,

 uint32_t const nBufSize,

 bool const bDMA,

 uint32_t * const pHwError

);

This API is valid only for Blocking mode.

adi_xxx_Read

This API submits the given buffer for receiving and waits until the buffer is filled before returning.

When a peripheral error is detected, this API returns immediately with an error indicating that a
hardware error has occurred. The actual hardware error(s) will be written into the user-provided
variable pointed to by pHwError, see , which explains how errors are Peripheral Error Reporting
reported.

ADI_XXX_RESULT adi_xxx_Read (

 ADI_XXX_HANDLE const hDevice,

 void * const pBuffer,

 uint32_t const nBufSize,

 bool const bDMA,

 uint32_t * const pHwError

);

This API is valid only for Blocking mode.

Device Drivers User Guide
August 2018

12

The following sequence diagram shows how the blocking mode APIs are used to interact with the
device driver.

1.3.6 Switching Between Interrupt and DMA Mode

Drivers permit an application to switch between interrupt mode and DMA mode at run time.
Interrupt mode can be advantageous to use for short transfers (1 to 2 words), reducing the overhead
for setting up a DMA transaction. This API can be useful in scenarios where application is looking
for a pattern/header before starting the actual DMA: initially, the application would start the
peripheral in interrupt mode and schedules short transfer for interpreting the pattern. After the
expected pattern is received, the application switches over to the DMA mode.

Switching between Interrupt and DMA mode can be done on a per transaction basis. The
 APIs take a boolean parameter to allow adi_xxx_SubmitBuffer, adi_xxx_Read/Write bDMA

application to choose if the transaction should be completed using DMA mode or Interrupt mode.
When bDMA is set to true, the transaction is completed by using DMA mode, when set to false the
transaction is completed in Interrupt mode.

Device Drivers User Guide
August 2018

13

1.

2.

1.3.7 Using Callback Mode

By default, device drivers do not provide callbacks to the application (: Not all drivers NOTE
provide callback mode support). If required, an application can register the callback with the driver
after it is opened. The callbacks are not required for a typical application and not recommended to
use, except for "event-driven" peripherals such as accelerometers. Refer to Motivation for Avoiding

 to understand the rational for avoiding callbacks.Callbacks

The following API is provided to register an optional callback and, thereby, to place the driver into
Callback mode. When a callback is registered, peripheral errors and buffers are not returned with
the API call. The buffer pointer and peripheral errors are passed back to adi_xxx_GetBuffer

the application as callback arguments. If the application calls the after adi_xxx_GetBuffer

registering the callback, the call returns an error. For more information, see Peripheral Error
, which explains how errors are reported.Reporting

The API "un-registers" the callback if called with a NULL callback parameter.

adi_xxx_RegisterCallback

ADI_XXX_RESULT adi_xxx_RegisterCallback (

 ADI_XXX_HANDLE const hDevice,

 ADI_CALLBACK pfCallback,

 void * const pCBParam

);

This API will place the driver into callback mode.

 Callback Routines
All application callback routines are of type .ADI_CALLBACK

The definition of is as follows.ADI_CALLBACK

typedef void (* ADI_CALLBACK) (/* Callback function pointer */

 void pCBParam, /* Client supplied callback param */

 uint32_t Event, /* Event ID specific to the Driver/Service */

 void pArg /* Pointer to the event specific argument */

);

Callbacks are called by the driver when one of the following event types occurs:

A read or write transaction is complete.The argument that is passed back is the pArg

address of the buffer. At this point the application owns the buffer.

An error has occurred during the read or write transaction. contains the error code(s) pArg

for the driver.

Device Drivers User Guide
August 2018

14

Each driver documents the various "events" that can occur and cause a callback. It is the
application's responsibility to process the event in the callback and take an appropriate action. If
the cause of the callback is a event, the application must synchronize the transaction complete
event with the application. Synchronization can be accomplished via a simple global variable or, in
the context of an RTOS, via a semaphore.

Callbacks operate at interrupt level, so care must be taken to minimize the amount of code
executed inside of the interrupt.

Callback mode is required for "event-driven" controllers.

For controllers that are "event data driven", such as accelerometers, captouch, or touchscreen
controllers, blocking mode reads and writes are supported only in conjunction with Callback mode.

Supporting non-blocking calls for these devices requires too much complexity in the driver, and the
end result is a less efficient I/O for the application (that is, non-blocking requires more overhead
than blocking, resulting in slower I/O). Non-blocking requires the underlying bus driver (I2C or
SPI) to remain in an open state, which prevents any other context from using the bus driver.

For all of these reasons, the open API for these devices requires a callback.

The callback event indicates that data is ready to be read. The callback must synchronize this event
with the application because the blocking read call cannot be made from within the callback (the
callback is operating at interrupt level, and a blocking-mode read, while at interrupt level, results in
erroneous behavior). The blocking-mode read call must be made at application level.

The following sequence diagram shows how the non-blocking mode APIs are used to interact with
the device driver when using callback routines.

Device Drivers User Guide
August 2018

15

1.3.8 Peripheral Error Reporting

If a callback is registered, peripheral errors and DMA errors are reported via the callback. If a
callback is not registered, peripheral errors and DMA errors are reported via the

 or API calls. The adi_xxx_GetBuffer adi_xxx_Read/Write adi_xxx_GetBuffer

and calls will return a single error code () upon adi_xxx_Read/Write ADI_XXX_HW_ERROR

detecting an error. An application can examine the HwError (passed as pointer to
 or to find out the exact cause of an adi_xxx_GetBuffer adi_xxx_Read/Write APIs)

error. The driver will logically OR all the errors that has occurred before calling the
adi_xxx_GetBuffer API and clear them once they are reported.

Hardware error enumeration are defined such that the errors are logically ordered. For example:

typedef enum

 {

 ADI_XXX_NO_HW_ERR = 0, /* No Errors were detected. */

 ADI_XXX_HW_ERR_OVF = 1, /* Overflow error was detected. */

 ADI_XXX_HW_ERR_UFL = 2, /* Underflow error was detected. */

Device Drivers User Guide
August 2018

16

 ADI_XXX_HW_ERR_DMA = 4, /* DMA error was detected. */

 ...

 }

1.4 Motivation for Avoiding Callbacks

There are a number of reason why applications should avoid callbacks.

Operating at Interrupt Level

The callback is invoked from the Interrupt Service Routine. Therefore, the callback is operating at
interrupt level. This gives the application supervisor mode capability. The application will have full
access to the machine's MMRs and to the machine's privileged instructions.

	User Guide
	Features Supported by Device Drivers
	Device Driver Operating Modes
	Blocking mode
	Non-Blocking mode for all devices
	Callback mode

	Device Driver API Reference
	Open/Close
	adi_xxx_Open
	adi_xxx_Close

	Non-Blocking Mode APIs and Buffer Ownership
	Non blocking buffer transaction APIs
	adi_xxx_SubmitBuffer
	adi_xxx_GetBuffer

	Non-Blocking Peek Functions
	adi_xxx_IsBufferAvailable

	Blocking Mode APIs
	adi_xxx_Write
	adi_xxx_Read

	Switching Between Interrupt and DMA Mode
	Using Callback Mode
	adi_xxx_RegisterCallback

	Peripheral Error Reporting

	Motivation for Avoiding Callbacks

