ANALOG
DEVICES

AHEAD OF WHAT'S POSSIBLE™

ADuCM302x Device Family Pack User's
Guide for Keill

ADuUCM302x Device Family Pack User's Guide for Keil © 2018 Analog Devices, Inc.
Version 3.1.0, August 2018 http://www.analog.com

http://analog.com

Contents

Introduction

1.1 Purpose

1.2 Scope of this Manual

1.3 Acronyms and Terms

1.4 Conventions

1.5 References

1.6 Additional Information
1.6.1 Manual Contents

Product Overview

2.1 Software System Overview

2.2 Hardware System Overview

Installation Components

3.1 Keil Project Support Files
3.1.1 SCTFile
3.1.2 Jlink Settings File
3.1.3 Flash Loader Algorithm

3.2 KEIL Project Options
3.2.1 Options for Target
3.2.2 Device Options
3.2.3 Output
3.2.4 Linker Listing
3.2.5 User Setting
3.2.6 C/C++ Setting
3.2.7 ASM Setting
3.2.8 Linker Setting
3.2.9 Debugger Setting

3.2.10 Debug Settings (J -Link/JTrace Setup and Connection)

3.2.11 Utilities
ADuUCM302x System Overview
4.1 Block Diagram and Driver Layout
4.2 Boot-Time CRC Validation
4.3 System Reset Strategy
Application Configuration
5.1 Application Initialization
5.2 Static Pin Multiplexing

5.3 UART Baud Rate Configuration Utility

5.4 Driver Include Files

5.5 Driver Configuration
5.5.1 Global Configuration
5.5.2 Configuration Defaults

O 0 0O N ~NO O O & B b

NRNNDNRNONNRNMNNMNNNNNNNNRRERRERRERRRRRRRR B R
0 00 ~N~NO U0 WwWWNNOOWO®NOOOOIAWWDNDINDDNDDNEREROO

55.3
554
5.5.5

Configuration Overrides
IVT Table Location
Interrupt Callbacks

6 Device Driver API Documentation
6.1 Device Driver APl Documentation

6.2 Appendix
6.2.1 CMSIS
6.2.2 Interrupt Vector Table
6.2.3 Startup_<Device>.c Content
6.2.4 System_<Device>.c Content

29
29
30
32
32
33
33
33
34
34

1 Introduction

1.1 Purpose

This document describes the ADUCM 302x Device Family Pack (DFP) for Keil uVision and its use.
The ADUCM302x processor integrates an ARM Cortex-M3 microcontroller with various on-chip
peripherals within a single package.

1.2 Scope of this Manual

This document describes how to install and work with the Analog Devices ADUCM302x Device
Family Pack. This document explains what is included with the package and how to configure the
software to run the example applications that accompanies this package.

This document is intended for engineers who integrate ADI’ s device driver libraries with other
software to build a system based on the ADUCM 302x processor. This document assumes
background in ADI’s ADUCM 302x processor.

ADuUCM302x Device Family Pack User's Guide for Keil 4
August 2018

1.3 Acronyms and Terms

ADI Analog Devices, Inc.

API Application Programming Interface

ARM Advanced RISC Machine

CMSIS Cortex Microcontroller Software Interface Standard
Cortex A seriesof ARM microcontroller core designs
CRC Cyclic Redundancy Check

DFP Device Family Pack

HRM Hardware Reference Manual

ISR Interrupt Service Routine

IVT Interrupt Vector Table

JTAG Joint Test Action Group

NVIC Nested Vectored Interrupt Controller

RISC Reduced Instruction Set Computer

RTOS Real-Time Operating System

TRACE Debugging with TRACE access port

ADuUCM302x Device Family Pack User's Guide for Keil
August 2018

1.4 Conventions

Throughout this document, we refer to two important installation locations: the ADuCM 302x
Device Family Pack and the Keil toolchain installation root. Each of these packages can be
installed in various places, which are referred to as follows:

® <Keil _root>

* Thedefault KEIL Pack installer places the product at location C:
\ Kei | _v5\ ARM Pack\ Anal ogDevi ces. Therewill be the following folder for
ADuUCM302x within that location called ADUCM302x_ DFP.

* <ADUCMB02x_r oot>

* Thedirectory C:\Kell_v5\ARM\Pack\AnalogDevicessADUCM302x_DFP\ 3. 1. 0
which contains the content of the ADuUCM302x KEIL Pack file.

1.5 References

1. Analog Devices: <ADUCMB02x_r oot >/ Docunent s

a. ADUCM302x_DFP 3.1.0_Release Notes.pdf

b. ADUCM302x_DFP_Device Drivers UsersGuide.pdf

c. ADUCM302x_DFP_Getting_Started Guide Kell.pdf (brief introduction)

d. ADUCM302x_DFP_Users Guide Keil.pdf (this document)

e. ADUCM302x Device Drivers APl Reference Manual (Docs/ ht M and hyperlinked)
2. For Keill <Kei | _r oot >/ ARM H p [http://www.keil.com]

a. Keil MDK for Cortex-M microcontroller.

b. Release notes.
3. The Definitive Guide to the ARM CORTEX-M3, Joseph Yiu, 2" edition.

* Every Cortex programmer’s bible; a must-have reference.

N

. Micrium [http://micrium.com]
a. UC/OS-II RTOS for ARM Cortex-M3
b. uC/OS-1I User's Manual
5. SEGGER J-Link Emulator [http://www.segger.com]

ADuUCM302x Device Family Pack User's Guide for Keil
August 2018

http://www.keil.com
http://micrium.com/
http://www.segger.com/

1.6 Additional Information

For more information on the latest ADI processors, silicon errata, code examples, development
tools, system services and devices drivers, technical support and any other additional information,
please visit our website at www.anal og.com/processors.

1.6.1 Manual Contents
® Product Overview
* |nstallation Components
* ADUCM302x System Overview
® Build Configurations
® Examples

® Device Driver APl Documentation

ADuUCM302x Device Family Pack User's Guide for Keil
August 2018

http://www.analog.com/processors
https://labrea.ad.analog.com/confluence/display/DOCBSPCM302XKEIL/.Examples+v2.0.0

2 Product Overview

2.1 Software System Overview

The ADUCM302x EZ Kit BSP provides files which are needed to write application software for the
ADuUCM302x processor. The product consists of a boot kernel, startup, system and driver source
code, driver configuration settings, driver libraries, sample applications and associated
documentation (see Figure 1. Software Overview).

The ADUCM302x BSP i's designed to work with KEIL uVision in CMSIS pack format for ARM!!-2

Boot Kernel

System and Startup Code Keil Run-Time Libraries

ADuCM302x

S System Overview
Application

/

Pin Multiplexing

Driver and Service Libraries Driver Configuration Settings

Figure 1. Software Overview

2.2 Hardware System Overview

The examples provided with the ADuCM302x BSP run on the Analog Devices ADUCM 302x-EZ-
Board evaluation board. The evaluation board is connected to the host computer using a Segger J-
Link lite emulator over the evaluation board’ s JTAG or TRACE debug port interface connectors.

External 1/O signals and system hardware are connected to the evaluation board connectors as
shown in Figure 3, ADUCM 302x EZ-Board.

ADuUCM302x Device Family Pack User's Guide for Keil
August 2018

USB-UART

Y

ADuCM302x Ez
Board

Figure 2. Hardware Overview

Figure 3. ADUCM 302x EZ-Board

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

3 Installation Components

The KEIL MDK http://www2.keil.com/mdk5 or later must be purchased and installed prior to
installing the ADUCM 302x Device Family Pack. Follow the instructionsin the KEIL MDK for
ARM product installation procedure (Keil uVision Full license version).

Keil toolchain support files are placed with the Keil installation folder (e.g. C:
\ Kei | _v5\ ARM Pack\ Anal ogDevi ces\ ADuCM302x_DFP). Thisa so includesfilesfor
flash loading, debugging, etc.

The ADUCM302x EZ-KIT Lite (startup code, device drivers, libraries, examples, tools,
documentation, etc.) are placed at Kei | _v5\ ARM Pack\ Anal ogDevi ces\ ADuCv302x_DFP
\Xx.y. z.

| b Computer » DRIVE_C (T » Keil_wS » SRR » PACE » AnalogDevices » ADUCKI0Z: DFP » 2.0.0 »

- = Open Include in library - Share with - Mew folder

Marme . Date rmodified Type Size
Documents 519,/2017 2:21 PhA File folder
Flash 518/201TF 121 PMA File folder
Include 5F19,/2017 2121 P File folder
License 518/201TF 121 PMA File folder
apenocd SF1972017 2:21 PMA File falder
Source 518/201TF 121 PMA File folder
WD 519/2017 2:21 PAA File folder
tools 5192017 2121 P File folder

|| AnalagDevices. ADUCM3INZ_DFP.pdsc 57182017 &40 PR PDSC File 20 KB

Figure 4. Installation Directory Structure

3.1 Keil Project Support Files

This section documents the KEIL-specific details of the ADUCM302x Device Family Pack. A
working knowledge of the KEIL toolchain and environment is assumed. See the KEIL reference
materials for details of installing, configuring and using the KEIL tools. The following are the list
of important files contained in the ADUCM 302x DFP, necessary to build applicationsin the Kell
uVision environment.

* SCT File

ADuUCM302x Device Family Pack User's Guide for Keil 10
August 2018

http://www2.keil.com/mdk5

* Jink debugger setting file (JLinkSettings.ini)
® Flash Loader Algorithm (.FLM)

3.1.1 SCT File

A .SCT file contains the memory configuration of the ADUCM302x core, thisfile can be
customized as per the application needs.

A SCT file can be stored in the same path as aKeil project file. The SCT file in the project can be
used to define and all ocate various memory regions:

® Internal SRAM size
®* FLASH size
* Placement of all code and data blocks
® Reserves memory for post-link processing (CRC checksums, parity, etc)
The SCT file can be used to:
* Define Memory “Regions’ (size, location, alignment, etc.).
®* FLASH Area, Internal SRAM Code, SRAM Data, Specia-Purpose, etc.
® Internal SRAM Bank Partition.
* Define“Blocks’ for Specific Tasks
* Runtime Stack, Heap Space, etc.
* Sizeand Alignment.
® Specify Runtime “Initialization” Sections
* Linker and C-Runtime Startup Collaboration.
® Compress Code/Data for Expansion into Internal SRAM at Startup.
* Manage Code and Data “ Placements” within Regions
* Explicit Interrupt Vector Table (IVT) Placement.
* Read-Only, Read-Write Attribute.
* Specia Section Handling.
Default Flash, Code and Data Placements.

Explicit Stack and Heap Block Placements.

ADuUCM302x Device Family Pack User's Guide for Keil
August 2018

3.1.2 Jlink Settings File

The Jlink setting file (JLinkSettings.ini) is present in each example project folder, thisfile helps
the J-Link debugger to retain the device configuration every time a debugger session isinitiated. If
thisfileisnot present the user has to manually select the device in the jlink settings.

3.1.3 Flash Loader Algorithm

The Flash Loader is used to burn application executables to the on-chip flash over the debug port
(using the emulator). The application may then be executed directly from flash.

The flash algorithm is stored in the following path in the Pack Installation C:

\ Kei | _v5\ ARM Pack\ Anal ogDevi ces\ ADuCM302x_DFP\ x. y. z\ Fl ash.

Upon successfully connecting to the device, the flash algorithm should be selected to download the
image into the flash device (Refer to Section J-Link/J-Trace - Setup and Connection).

3.2 KEIL Project Options

3.2.1 Options for Target

The Target tab in the projects Options for Target alows the user to set various project
configuration described in the following section.

L C:\Temp\new.uvprojx - pVision
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

Sdd @| | | ® | & = | @ Hasale o o A
S E @ | | Targert Fl&la=esa
Project 2@ L] main. v X
% Project new =] 1
O & Targetl 2 # e <ADUCM3029_device.h>
N 9
S8 source Group 1 3 ¢ e <ADUCM302$-h>
48int n() {
0 mainc
% Cvsis K Options for Target Target 1 [x]
=@ Device Device Target | Output| Listing | User | ¢/c++ | Asm | Linker | Debug | Uiities |
B Retarget. (Retarget)
51 adi_adxi263.c (DriversADXL363) Anslog Devices ADUCM3023 Code Generation
T adi_adcc (Drivers:ADC) Xtal (MHg): [120 ARM Compiler
% adi_beep.c (DriversBEEP)
erating system: [None B
ET adi cre.c (DriversCRC)
B adicyptoc DriversCrypta) L il ™ Use Cross-Module Optimization
BT adi flash.c (Driversilash) || T usemicous r
ST adi i2cc (Driversi2C)
BT adi_mg.c (DriversRNG) Read/Wiite Memory Areas
a adi_spi.c (DriversSPI) Size Startup default off-chip Start Size Nolnit
& adi_sport.c (DriversSPORT) ’7 ’7 -
- C RAM1
ST adi uartc (Drivers:UART) =
BT adi dma.c (ServicesDMA) ~l L Romz c O Rawz O
& project | € 8ooks | {3 Functions | [y Templates < [~ RoM3 c [~ RAM3 r L »
Build Output Cach Sty 2@
= mow: [P0 xt0000 6 Raw [P20000000 [oxi0000 r -
[T IROMZ C [T IRAMZ r
ok | cancel Defauts | Help
ULINK2/ME Cortex Debugger L1c1 CAP/NUM SCRL OVR R/W,
——— =T — = —_—
.
ADuUCM302x Device Family Pack User's Guide for Keil 12

August 2018

Figure 5. Project Options shows the project configuration options for the ADuUCM 3029
pr ocessor

3.2.2 Device Options

The Device tab in the Target Options allows the user to choose the target processor variant for
which the project is being built. This selection is very important because it drives a number of
other project settings, such as selecting the correct flash downloader from the pack file (see Figure
6. Device Selection).

kA C:\Temp\new.uvprojx - pVision
File Edit View Project Flash Debug Peripherals Tools

== @| | | m Ea#‘\@\o & &|[@T) &
& (8 S L] ¥ Target1] &
Project main. v x
28 Pproject: new | 1
O 85 Target1 2 #include <ADUCM3029_device.h>
L s 3 #include <ADUCM3029-h>
& source Group 1 : :
4gint main() {
3 mainc
4 cvsis N4 Options for Target Target 1 [x]
29 Device Device | Target| Output| Lising| User | G/c-+ | Asm | Linker| Dobug Usities|
& Retargetc (Retarget) \
T adi_adxi263.c (Drivers:ADXL363) [Sofware Packs =1
& adi_adcc (DriversADC) Vg Aozing/Bes Software Pack
& adi_beep.c (Drivers:BEEP) Device: ADUCM3029 Pack: ‘AnalugnsvmesADucMmm,DFP102
BT adi_crec (DriversCRO) S — URL: m— p—
& adi_crypto.c (Drivers:Crypta) —
T adi flash.c (Driversilash) Search
& adiizcc ©riversi20)
B adi_mg.c (DriversRNG) =% Analog Devices
ET adispic OriverssPD =% ADUCM302x Series
B adi_sport.c (DriversSPORT) @ ADuCM3027
BT adi_uartc (Drivers:UART) @ ADUCM3029
& adi_dma.c (ServicesDMA) ~| % ADUCM36x Series
[EProject | @Books | {} Functions | Dy Templates < % CM41x Mixed Signal Control Proce r
w5
e CMdxx Mixed Signal Control Proces e
¢ ARM
« o <
oK ‘ Cancel Defaults Help
)
C\Users\amclach\Desktop\trunky | ULINK2/ME Cortex Debugger L1C1 CAP NUM SCRL OVR R /W
- == — = et

Figure 6. Device Selection

3.2.3 Output

The Output tab in the Options for Target allows the user to set the executable name or create a
library file, and select the output file format that can be generated by the ARM CC compiler as
shown in the Figure 7. Output Settings.

ADuUCM302x Device Family Pack User's Guide for Keil 13
August 2018

-arlale o cel@) A

R I S
@ L] B Target1 ;

| R ——————————————————————————————SS—
| =% Project: new Devicel Target Output | L'Blingl User | CICH' Asm | Linkell Debug| Utililiesl

545 Targetl

E % Source Group 1 SelectFolder for Objects... | Name of Executable: IBUU-DH_LED_GPm
N main.c

¥ CMSIS % Create Executable: \Objects\Buttan_LED_GPIO
5% Device

Retarget.c (Retarget)
adi_adx|363.c (Driver] | [Create HEXFile
adi_adc.c (Drivers: A | [¥ Browse Information
adi_beep.c (Drivers:
adi_crc.c (Drivers:CR{|
adi_crypto.c (Drivers] |
adi_flash.c (Drivers:Fj|
adi_i2c.c (DriversI2C]
adi rna.c (Drivers:RN

| il Project ﬁBoaks ‘ {} Functions “l

Build Output

[¥ Debug Information [Create Batch File

BB

®

¢ Create Library: \Objects\Button_LED_GPIO.lib

BB

®
I B o oy Y

1]

0K Cancel Defaults Help

[

ULINK2/ME Cortex Debugger CAP NUNV .+
=

Figure 7. Output Settings

3.2.4 Linker Listing

The Listing tab in the Options for Target alows the user to select the Assembler listing and the
linker map file for the KEIL ARM CC compiler as shown in the Figure 8. Linker Listing.

ADuCM302x Device Family Pack User's Guide for Keil 14
August 2018

ATem
‘| File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
NG A@| 5 al]ac]eo|nrnn|==eis Faslale s al@ |
@ﬁllﬂ@hﬂlwlﬁrgetl

i I
| | -
=% Project: new Devical Talgell Output Listing |Us.e| | CIC-H—' Asm | Linkell Debugl Uﬁliliesl
=] B Target 1
=5 Source Group 1 Select Folder for Listings. | Page Width: [79 2] Page Lenghn [6 =
i main.c
% cvsis [v AssemblerListing: \Listings* st
=% Device

[¥ Cross Reference

fr Retarget.c (Retarg

@ ET adi_adxi363.c (Drivi
3} adi_adc.c (Drivers:Al
adi_beep.c (Drivers: [~ CPreprocessor Listing: \Listings'™.i
adi_crc.c (Drivers:C|

i
-5
i
@ adi_crypto.c (Driver:
i
w8
lﬁ

[~ CCompilerListing: \Listings\" xt

adi_flash.c (Drivers:|
adi_i2c.c (DriversI2 [¥ Linker Listing: \Listings\Button_LED_GPIO.map

5] adi_ma.c (Drivers:Ri v Memory Map [v Symbols [v Size Info
(i Project | €3 ook ‘ {3 Functions ‘ o [v Callgraph [v Cross Reference [¥ Totals Info
Build Output [¥ Unused Sections Info]
[v Veneers Info n

ok | cancel | Defaulis Help

| ULINK2/ME Cortex Debugger CAP NUNM

= = S—)

Figure8. Linker Listing

3.2.5 User Setting

The User tab in the Options for Target alows the user to set any user command for a pre and post
build for the KEIL ARM CC compiler as shown in the Figure 9. User Setting below.

1A C:\temp\Boards\ADUCM302x-EZ-Board\HelloWorld\H rojx - pVisior
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
NS A0 % a@|9c|en|rran AT Clasale o salE
S BB e] ¥ Heloworld Debug [v]

% Project: HelloWorld
£ # HelloWorld Debug

=5 Source
3 Helloworld.c

=5 Readme
D Reacme HelloWorld ot Device| Target| Output] Lising User |/Gs+ | Asm | Linker | Dobug| s |

4 cwmsis

=% Device
B Retargetc (Retargen Command Ttems User Command Stop on ExitCode Spawn
T adi uartc (DriversUART) & Before Compile C/C.. |
BT adi_dma.c (SenvicesDMA) ™ Run#1 Not Specified r
BT adi_pwr.c (ServicesPower) r Run#2 Not Specified r
] startup_ADUCM3029.5 (Startup) = Before Build/Rebuild
B T Run#1

system_ADUCM3029.¢ (Startup)

Not Specified r

[~ Run#2 Not Specified r

- After Build/Rebuild
[~ Run#1

[~ Run#2

Not Specified
Not Specified

R\f G| (@

=
=

I~ Run'AfterBuild’ Conditionally
[BeepWhen Complete [~ Start Debugging

ok | cancel

< [

[Project | @ Books | 1) Functions | {1, Templates |

Build Output

k] »

J-LINK / J-TRACE Cortex CAP NUM SCRL OVR R/W

ADuCM302x Device Family Pack User's Guide for Keil 15
August 2018

Figure 9. User Setting

3.2.6 C/C++ Setting

The C/C++ tab in the Options for Target allows the user to set any compiler flags, defines, include
search paths, optimization levelsinto the build for the KEIL ARM CC compiler as shown in the
Figure 10. C/C++ Setting below.

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

N dds salac|[ao|PBRR[FFERD ow Clasale o salE

% Project: HelloWorld
©#5 HelloWorld Debug
=5 Source
3 Helloworld.c
=5 Readme
1 Readme_HelloWorid.txt Device | Target| Output] Lising| User /G | Asm | Linker| Dobug] Usies |
4 cwmsis
=% Device
T Retarget.c (Retargeth R |
adi_uart.c (Drivers:UART)
5T adi dma.c (ServicesDMA)

Undefine: |

adi_pwr.c (ServicesPower) _ Language Corl
O startup_ADUCM3029.5 (Startup) P S —
3 system_ADUCM3029.c (Startup) S oo 5 I EnumCor
[~ Optimize for Time [~ PlainChal
[~ SplitLoad and Store Multiple eal Indlependent [No Auto Includes
[+ One ELF Section per Function I ReadWiite Position Independent [~ €99 Mode

< [
[Project | @ Books | 1) Functions | {1, Templates |

Build Output

J-LINK / J-TRACE Cortex CAP NUM SCRL OVR R/W

Figure 10. C/C++ Setting

3.2.7 ASM Setting

The ASM tab in the Options for Target alows the user to set any Assembler flags, defines, include
search paths, PIP modes into the build for the KEIL ARM CC compiler as shown in the Figure 11.
ASM Setting below.

ADuCM302x Device Family Pack User's Guide for Keil 16
August 2018

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

EPFEIEE R Y 1| @ 080 Fladale oo aE R

=% project: HelloWorld
=43 HelloWorld Debug

=& source
HelloWorld.c

=5 Readme
3 Readme_HelloWorld.txt

@ cmsis

=% Device . bo
-1 Retarget.c (Retargety
T adi_vartc (DriversUART)
T adi dma.c (ServicesDMA)
T adi_pwr. (ServicesPower)

Device| Target| Output| Listing| User | C/c++ Asm | Linker | Debug | Uiities |

Define: |

Undefine |

- Language / Code
O startup_ADUCM3029.s (Startup) [~ Execute-only Code.
system_ADUCM3029.c (Startup)

™ Read-Only Position Independent [~ SplitLoad and Store Mutiple
[~ Read-Write Position Independent

[~ Thumb Mode.

[~ NoWarnings [~ No Auto Includes

Include I
a

Misc. I
Controls.

Assembler |7cpucomexrllﬂrgfap:$|melwmk
control
sting I'IC\KelL \ARMI

\

o |

< ||
[project | @ ooks | 1) Functions | [l Templates |

Build Output

J-LINK / J-TRACE Cortex CAP NUM SCRL OVR R/W

Figure 11. ASM Setting

3.2.8 Linker Setting

The Linker tab in the Options for Target allows the user to set the path for the memory
configuration file (SCT file) or to set custom memory configuration in the tab itself for the KEIL
ARM CC compiler as shown in the Figure 12. Linker Setting below.

Edit

iew Project Flash Debug Peripherals Tools SVCS Window Help
SA@ 4 aB|o || PBRAR 1| @ oxso

&8 @] ¥ Heloworld Debug [v]

EEREIEEY =aEY

=% project: HelloWorld
=45 HelloWorld Debug

=& source
HelloWorld.c

=& Readme
1) Readme HelloWorldxt Device | Target| Output| Listing| User | C/G++| Asm Linker | Debug| Uiities |

@ cmsis

L6 Devce [¥ Use Memory Layout fom Target Dialog X/OBase:
T Retarget.c (Retargety [~ Make RW Sections Position Independent R/O Base: [P00000000
5T adi_vartc (Drvers UART) [~ Make RO Sections Position Independent AW Bas ,W
T adi_dma.c (ServicesDMA) [Don'tSearch Standard Libraries

& adi_pwr.c (ServicesPower) |¥ Report'mightfai’ Condiions as Errors. bR nos

O startup_ADUCM3029.s (Startup)
13 system_ADUCM3029.c (Startup)

Misc.
controls

Linker [-cpu Cotex:M3*.0
conlrol |stiict—scatter "\Objects\HelloWorld.sct’
‘stiing ~|-summary_stderr ~info

ok | cancel

< |
[EProject | @ 500ks | {3 Functions | [y Templates |

Build Output

J-LINK / J-TRACE Cortex CAP NUM SCRL OVR R/W

ADuCM302x Device Family Pack User's Guide for Keil 17
August 2018

Figure 12. Linker Setting

3.2.9 Debugger Setting

The Debug tab in the Options for Target allows the user to configure the Segger J-Link and its
parameters. See Figure 13. Debugger Setup below.

Boards\AD x-EZ-B lloWo Worl
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
NS A @ 6 a9 o] | PR BR| EE

| @ @i B Heloworid Debug [¥]

Faclale oo el@

&% Project: HelloWorld
5 & HelloWorld Debug

=& Source
3 Helloworid.c

=5 Readme K

o 1 Readme Helloworid.txt evice | Target| Output| Listing| User | C/c++| Asm | Linker Debug | ities |

e E’:\ii r wih resticions _setings | | @ Use: [FINK/ STRACE Corex][setings |
T Retarget.c (Retargety jol
T adi_uartc (DriversUART) [7 Load Application at Starup ¥ Runto main()

adi_dma.c (ServicesDMA)

Initialization File:
T adi_pwr.c (ServicesPower) ,— J Edit
3 startup_ADUCM3029.5 (Startup)

R Restore D

[0 system_ADUCM3029.c (Startup)
¥ Breakpoints. [+ Toolbox
[¥ WatchWindows & Performance Analyzer ¥ Watch Windows
[¥ Memory Display ¥ System Viewer ¥ Memory Display [System Viewer

CPUDLL: Parameter: Driver DLL: Parameter:
ISARMCM} DLL | ISARMCM3 DLL |

Dialog DLL: Parameter Dialog DLL: Parameter:
IDCM DLL I'pCM:i ITCM DLL I'pCM:i

Cancel | Defauts |

< |]
[Project | @ Books | {3 Functions | {1, Templates |

Build Output

J-LINK / J-TRACE Cortex CAP NUM SCRL OVR R/W.

Figure 13. Debugger Setting

3.2.10 Debug Settings (J -Link/JTrace Setup and Connection)

The Settings under the main Debug tab in the Options for Target contains three sub settings
(Debug, Trace, Flash Download) these alow the user to configure the Segger J-Link debugger and

its modes (SWD/JTAG). Figure 14. Debugger Setting below shows the settings for a sample
project.

ADuCM302x Device Family Pack User's Guide for Keil 18
August 2018

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

NEZ L@ 2 @2 &

PRAR

Faelale oo e|@T) R

| G @i ¥ Hetoworid Debug [v]

=% project: HelloWorld
=43 HelloWorld Debug
=& source
HelloWorld.c
=5 Readme
3 Readme_HelloWorld.txt
@ cmsis
=% Device
Retarget.c (Retarget)
adi_uart.c (Drivers:UART)
adi_dma.c (ServicesDMA)
adi_pwr.c (ServicesPower)
startup_ADUCM3029:s (Startup)
system_ADUCM3029.¢ (Startup)

UG s ie sy

<

|

Device| Target | Output| Listing| User | C/c++| Asm | Linker Debug | uities |

Setiings.

(" UseSimulator with restricions @ Use:

JLINK] J-TRACE Cortex

[~ Limit Speedto Real-Time

[+ Load Apy

Initizlization File:

tion at Startup,

Debug | Trace | Fiash Download |
Restore Diebug Session Sef

- Link [Ty sw
[Breakpoints SN =] IDCODE [Device Name | sz
[T e Device: JLink ARMLite S i‘
10 o i 57 W [VEm an [Vet oo
FW: [J-LinARM Lite V8 compiled Oc
Port Max Clock: @ Automatic Detection D CODE
sw ~ 5MHz ~ € Manual Configuration DevieeName: [
CPUDLL: Parameter: Auto Clk Add Delete | | Update IR len
[sARMCNBDLL
Dialog DLL: Parameter
,W ,pCT Connect& Cache Opt pi

Connect [Nomal
v Reset after Connect

] Reset [Nomal =]

[V Cache Code
[Cache Memory

I~ Verfy Code Download
I~ Downloadto Flash

TCPAP

[project | @ ooks | 1) Functions | [l Templates |

® USB C TCPIP
IP-Address Port(Auto: 0 Autodetect JLink Info
Sem 27 .0 . 0 1)

Ping JLink Cmd

Build Output

State: ready

Gancel | Anpy

CAP NUM SCRL OVR R/W

Figure 14. J-L

ink/JTrace Setting

Trace options can be set-up on a per project basis too. See Figure 15. Trace Setting below.

Faelale oo e|@ R

=% Project: HelloWorld
=43 HelloWorld Debug

=& source
HelloWorld.c
Readme
3 Readme_HelloWorld.txt
cMsis
Device
Retarget.c (Retarget)
adi_uart.c (Drivers:UART)
adi_dma.c (ServicesDMA)
adi_pwr.c (ServicesPower)
startup_ADUCM3029:s (Startup)
system_ADUCM3029.¢ (Startup)

=R~}

&
R4

LUlglelele

< »

Device | Target | Output| Listing| User | ¢/c++| Asm | Linker Debug | iities |

Setiings.

(" UseSimulator with restrictions

[~ Limit Speedto Real-Time

[¥ Load Application at Startup,

Initizlization File:

Debug Trace |Flash Download

Restore Debug Session Setfll Trace s,

[v Breakpoints
[V Watch Windows & Perf
[V Memory Display

Trace Cache Lines [2M
[~ Use Cache File (max. 1GE)

Ti ps
[7 Ensble Prescaler. |1

I Enable

Core Clock: 10000000 MHz

I fon T

pling
Prescaler; 102416~

~Trace Pe

Serial Wire Output- UART/NRZ,

SWO Settings Trace Evenis
Prescaler Core Clk/ |—5 [Periodic Period: | <Disabled> [P Oycles per Instruction
CPUDLL Parameter - Il onData R Sample I~ EXC. Excaplion overhesd
[SARMCMS.DLL Ciock L - [T SLEEP: Sleep Cycles
ETMTrace
% Autodstect max SWO Clk
Dialog DLL: Parameter [¥] Autocietect max e [LSU: Load Stare Unit Cycles:
DCMDLL P I™ FOLD: Folded nstruciions
<Status> [¥ EXCTRC: Exception Tracing

ITM Stimulus

R 2 Pot
Enable: [0xFFFFFFFT i i a2 2 i ol vl a cal o e e v o v ra o2
Privilege: [0x00000008 Port31.24 [Port23.16 [Port15.8 [Port7.0 [~

|
[project | @ ooks | 1) Functions | [l Templates |

Build Output

’—Quick Help ‘

CAP NUM SCRL OVR R/W

Figure 15. Trace Setting

ADuCM302x Device Family Pack User's Guide for Keil

August 2018

19

The Flash Algorithm File has to be added as shown in the figure below on a per project basis. After
adding the algorithm the config window will ook as shown in the Figure 16. Flash Download
Setting.

File Edit View Project Flash Debug Per

ripherals Tools SVCS Window Help

mﬁdg”gmq Gl oo | mm R OW|EEE K| D oaso

Flasale oo aE R

(8 @ k| 5 Heloorld Debug [v]

&% Pproject: HelloWorld
=45 HelloWorld Debug
=215 Source
0 Helloworid.c
=5 Readme
13 Readme_Helloorld.txt
% cwvsis
=% Device
7 Retarget.c (Retarget)
T adi vartc (DriversUART)
&1 adi_dma.c (SenvicesDMA)
adi_pwr.c (ServicesPower)
3 startup_ADUCM3029.s (Startup)
3 system_ADUCM3029.c (Startup)

»

Device | Target | Output| Listing | User | c/c++| Asm | Linker Debug | uities |

(UseSimulator with restrictions

[~ LimitSpeedto Real-Time

Setiings.

® Use: |J-LINK/ J-TRACE Cortex ~| setings

¥ Load Application at Startug
Initialization File:

ortex.

JLink/JTr

ug| Trace Flash Download |

[¥ Breakpoints
[V Watch Windows & Perf
[¥ Memory Display

GPUDLL: Parameter:

[SARMCM3.DLL

Dialog DLL: Parameter:

DCMDLL -pem3

RAMfor Algorih
« EraseFullChip [Program
® EraseSectors [V Veiify Start 0>20000000 Size: |0x1000

€ DonotErase [ResetandRun

Description | Device Size | _Device Type | Address Range

ADuCM3029 256k Flash 256k On-chip Flash 00000000H - 0003FFFFH

< |
[Project | @ Books | 1} Functions | [, Templates |

Build Output

OK | Cancel Apply.

J-LINK / J-TRACE Cortex

CAP NUM SCRL OVR R/W.

Figure 16. Flash Download Setting

3.2.11 Utilities

The Utilitiestab in the Options for Target allows the user to set debugger parameters and choose
custom flash utilities (if any) as shown in the Figure 17. Utilities below.

ADuCM302x Device Family Pack User's Guide for Keil

August 2018

20

k4 Ctem [) !
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

MNE A0 % a@|9 o] | FrER = | @ oaso Fladale oo aE R
| G @i ¥ Hetoworid Debug [v]

=% Project HelloWorld
= HelloWorld Debug
=5 Source
HelloWorld.c
©& Readme
@ gM:I:admeje"owmldm Device | Target | Output| Listing| User | G/c++| Asm | Linker | Debug Uities |

=9 Device ~Configure Flash Menu C

Retarget.c (Retarget)
adi_uartc (Drivers:UART) ~Use Debug Driver — Settings [¥ Update Target before Debugging

adi_dma.c (ServicesDMA)
itFile:] Edt

adi_pwr.c (ServicesiPower)
" Use Extemal Tool for Flash Programming

(® Use Target Driver for Flash Programming [¥ Use Debug Diiver

startup_ADUCM3029:s (Startup)

LUlglelele

system_ADUCM3029.¢ (Startup)
‘Command: I

Arguments: |

[~ Run Independent

- Configure Image File. g (FCARM)
Output File: Add OutputFile to Group:

[source

Image Files Root Folder: I~ Generate Listing

Cancel | Defauts |

< ||
[project | @ ooks | 1) Functions | [l Templates |

Build Output

J-LINK / J-TRACE Cortex

CAP NUM SCRL OVR R /W.

Figure 17. Utilities

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

21

4 ADuCM302x System Overview

4.1 Block Diagram and Driver Layout

The Peripheral Device Drivers and System Services installed with this software package are used
to configure and use various ADUCM 302x on-chip peripherals. Figure 18. Peripherals and Driver
Source illustrates the available peripherals and interconnects on the ADUCM 302x processor and

corresponding source filesin the <ADUCM302x _r oot >/ Sour ce directory.

In general, the driver sources are located in the <ADUCM302x_r oot >/ Sour ce directory. The

include file path <ADUCMB02x_r oot >/ | ncl ude must also be specified in the project’s

compiler/preprocessor options (see section 3.2.3 C/C++ Compiler — Preprocessor).

4 200
Documents
Flash
Include
License
openocd

- Source
ARM
4 drivers
adc
beep
Joorc
crypto
dma
flash
gpio
Ji2c
pravr
g
oo
spi
sport
J trr
uart
widt
. wint
GCC
IAR
WD

tools

26 MHz CORE RATE

M,

[P | | seriaL-wire INSTRUCTION
RAMICACHE
e
it MULTI-] MA:E':E:ENT
coRTexan () taven K)o
[oeose] e
NVIC] wic MATRIX (::) ?&ﬁ:g]
REF BUFFER MPU
e =W
CRYPTO
(AES 1281256,
'/ SHA 256) |SPORT UART | U [Twro |[Tmr1 |[rrco |[rrct |
P <r s < <r <
AHB-APB
N .93 L9 I U I O I V2 BRIDGE
procrammaste |7 | P |[sm || #c | | ™Rz || TRNG |[eeerer]| opio || woT |

CRC POLYNOMIAL

Figure 18. Peripheralsand Driver Source

ADuUCM302x Device Family Pack User's Guide for Keil

August 2018

22

4.2 Boot-Time CRC Validation

The ADUCM302x system reset interrupt vector is hard-coded on-chip to execute a built-in pre-boot
kernel that performs a number of critical housekeeping tasks before executing the user provided
reset vector. Some of those tasks include initializing the JTAG/Serial-Wire debug interface and
validating flash integrity.

One of the primary tasks of the pre-boot kernel isto validate the integrity of the FlashO/Page0
region (first 2k of flash). Thisis done by comparing a pre-generated CRC code (embedded in the
executable code image at build-time) against a boot-time-generated CRC value of FlashO/Page0
using the on-chip CRC hardware. The Page0 embedded CRC signature is stored at reserved
location 0x000007FC.

ADuUCM302x KEIL support does not currently compute and implant the CRC signature into the
executable during the target build process (as a post-link build command). Therefore at boot time,
when the kernel computes a run-time FlashO/Page0 CRC value using the on-chip CRC hardware
and compares it against the value at the last CRC page, by default applications are built to omit the
CRC check.

4.3 System Reset Strategy

All projects require the reset strategy to be set to "normal” in order to enable the emulator to
download and debug programs on target hardware properly. The reset strategy is managed in the
project options dialog. Selecting the correct reset strategy is both toolchain and emulator specific
(see Figure 19. System Reset Setting). To set/verify the reset strategy on the Kell toolchain, click
on the "Options for Target”, then browse to the sub-dialog for "Debug->Settings'. Under the
"Reset" drop-down, select the "Normal™ option.

ADuUCM302x Device Family Pack User's Guide for Keil 23
August 2018

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

NEdd@| s sB|2c|es|rrnn

| @ oxso

Fladale oo aE R

8 @ | 8] netowona pevug [-] RLEE & L &

Project 2@
&% Pproject: HelloWorld B
=43 HelloWorld Debug
=& source

HelloWorld.c
=5 Readme
1 Readme_HelloWorld.txt
@ cmsis
=% Device
Retarget.c
adi_uartc
adi_dma.c
adi_pwr.c
startup_ADUCM3029:s (Startuy
system_ADUCM3029.c

< | ol

[Project | @ Books | {3 Functions | [y Templates |

Build Output

= JLink Info: FPUnit: 2 code (BP) slots and 0 literal slot
* JLink Info: CoreSight components:

* JLink Info: ROMTDL 0 @ EQOFFO0D

* JLink Info: ROMTbL 0 [0]: EFEFQF000, CID: B10SEQOD, PID:

* JLink Info: ROMTbL 0 [1]: EFF02000, CID: B10SEQOD, PID:

* JLink Info: ROMTbl 0 [2]: FFF03000, GID: B10SE00D, PID:

ROMTableRddr = OXEQOFF000

Targec info:

£ 1, TRST: 1

Software-Breakpoints: §182
Watchpoints: 1
JTAG speed: 2000 kdz

Erase Done.
Programming Done.
verify OK.
Zpplication running

Device| Target | Output| Listing| User | C/c++| Asm | Linker Debug | uities |

 UseSimulator wilh restiicions
[~ Limit Speedto Real-Time

Setings | | ® Use: [J-LINK/ J-TRACE Cortex

/)
Debug | Trace | Flash Download |
- HLink - Trace Adap! SW D
SN [228208214 ~] IDCODE | Device Name. | sz
= SWDI 77
Device: | JHink ARM Lite:

HW V800 di: [V8i0a
FW: [J-Link ARM Lite V8 compiled Oc

Port: MaxClock:
sw v 5 MHz ~

@ Automatic Detection
© Manual Canfiguration

ARM C DP o
Dawn

ID CODE.
Device Name:

Auto Clk Add Delete | | Update Rien [

Reset Opt

Connect [Normal Reset [Normal

¥ Reset afier Connect

he Opl
||| cacheCode.
[¥ CacheMemory | | [~ Dovnloadto Flash

pt
[~ Verify Code Download

T TR

@ USB (" TCP/IP

State: ready

IP-Address Port (Auto: 0)
Scan 127 0 0 1 0

Autodetect JLink Info
Pin JLink Cmd
_ors ||| _snkomd |

Flash Load finished at 14:12:06

oK | Cancel By

‘<

1@

H

J-LINK / J-TRACE Cortex

CAP NUM SCRL OVR RW

Figure 19. System Reset Setting

ADuCM302x Device Family Pack User's Guide for Keil

August 2018

24

5 Application Configuration

Application initialization and configuration will vary depending on the chosen operating mode.
The modes of operation include:

* Non-RTOS
® Theapplication is built without an RTOS.
* RTOS

* Theapplication is built with an RTOS. In this mode of operation the drivers can be
RTOS-Aware or RTOS-Unaware.

* RTOS-Aware Drivers

* Inthis C-Macro controlled mode of operation the driver’s source code will
include the following features:

® Interrupt Service Routines (ISR) with RTOS API calls used to
potentially cause atask context switch.

® Semaphores control communication between task-level code and ISR
level code.

* Mutexes control access to access to shared resources.
* RTOS-Unaware Drivers.

* |nthis C-Macro controlled mode of operation the driver’s source code will not
include the features listed above.

Each of the modes is explained in more detail in the sections below. There are some initialization
features that are common to all modes of operation.

5.1 Application Initialization

The functions Systeminit() and adi_initpinmux() are used to initialize an application. Systeminit()
isrequired to initialize the ARM Cortex CM SIS infrastructure and adi_initpinmux() initializes the
peripheral pin multiplexing, if static pin multiplexing is used (see section 5.1.2 Static Pin
Multiplexing). Figure 20. Application Initialization below shows these functions being called from
the user application main().

I nt main()
{

/* Initialize system (required) */

ADuUCM302x Device Family Pack User's Guide for Keil 25
August 2018

Systemnit(); /* system <Device>.c */
[* Initialize Pin Multiplexing (optional) */

adi _initpinmx(); /* Auto-generated source file using PinMix
Uility */

return O;

Figure 20. Application Initialization

5.2 Static Pin Multiplexing

Included with the ADUCM302x EZ Kit Lite® Board Support Package is a Pin Multiplexing
application which is capable of generating code to set al the port MUX and FER registers
statically for al peripheralsin asingle call. The Pin Multiplexing application is a Java application
which can be run from a command prompt:

Location: <ADUCVB02x _r oot >/t ool s/ Pi nMuxUl .

There are two versions of the Java application included with the Board Support Package (a 32-bit
and 64-bit version). Y ou will need to use the correct java.exe executable to run the application.

® 32-bit version: java-jar PinMuxUI_1.0.0.x_x86.jar

® To runthe 32-bit PinMux Stand-alone Utility, you should use the java.exe that is
installed in C:\Program Files (x86)\Java\jre8\bin (assuming that you have installed
Javaversion 8).

® 64-bit version: java-jar PinMuxUIl_1.0.0.x_x86 64.jar

® To runthe 64-bit PinMux Stand-alone Utility, you should use the java.exe that is
installed in C:\Program Files\Java\jre8\bin (assuming that you have installed Java
version 8).

After starting the application, you must first select the correct processor type from the top-right
drop-down list-box. Y ou are then able to select the desired peripherals to be enabled. The
application will not allow conflicting peripheralsto be selected. The Generate Code button will
create a C source file that sets the GPIO port configuration registers based on the peripherals and
functions selected. The C source file should be manually added to your project. The C sourcefile
has a function adi_initpinmux() which can be called from the application source (see Figure 21. Pin
Multiplexing Application) to set up the port MUX and FER registers.

ADuUCM302x Device Family Pack User's Guide for Keil 26
August 2018

Rt

Peripherals GPIO Processor type:

+ [] € SPI0 [SPI0 Module] - &y PO ’ADUCMBUF‘B v]

- [€» SPIL [SPIL Madule] - 4 Pl ’ Generate Code...] I
- [T] € SPI2[SPI2 Module] . 4p P2

+ [€ 12C0 [12C0 Module]

|| N

+ [] €» GPIO [Portd and Pertl GPIO] ’ Load Settings...]

- [] €» BEEPER [Beeper Module]

- [] € UARTO [UARTD Module] ’ Save Settings...]

» [€ SPORTO_A [SPORTO_A Module]

» [] €» SPORTO_B [SPORTO_B Module]

- [€ SYS_WAKEUP [SYstemn Wake up signals]
. [[] < RTC[RTC1-0C1]

+ [€ TIMERD [Tirmerd output]

«] €» TIMERL [Timerl output]

» [] €» TIMERZ [Tirner2 output]

» [€» SWDO [Serial Wire Debug]

[€ ADCO_IN [ADCO Module]

] € SYS_CLK [System Clock]

’ Register Values...]

Conflict Details

Figure 21. Pin Multiplexing Application

Note: The pinmux code generator isthe preferred method of configuring port multiplexing. It
avoids multiple dynamic calls to each driver and allows all pin multiplexing to be done once,
which reduces both footprint and run-time overhead.

5.3 UART Baud Rate Configuration Utility

Included with the ADUCM 302x EZ Kit Lite® Board Support PackageisaUar t Di vCal cul at or
utility which is capable of providing the baudrate configuration values for a specified clock. This
utility is available to help the user statically configure their Baudrate. The utility can also provide
the baudrate configuration values for a set of baudrates.

5.4 Driver Include Files

The C/C++ Compiler Preprocessor tab is used to define the additional include directories needed to
build the project. The device drivers only require the following search paths

ADuUCM302x Device Family Pack User's Guide for Keil 27
August 2018

<ADUCMB02x_r oot >/ | ncl ude
<ADUCM302x_r oot >/ | ncl ude/ config

to be added from the BSP installation. Applications may need to augment the pre-processor search
path with their own regquirements.

5.5 Driver Configuration

Most of the drivers are statically configurable. Their configuration is controlled via C/C++ pre-
processor macros that are managed in a common area.

Static initialization is preferred, asit offers two advantages over dynamic (API) initializations:

1. It reduces the run-time driver startup time (and complexity) of initializing each driver
through various driver configuration APIs.

2. It adlows programmers to bypass most of the driver configuration APIs atogether, thereby
allowing linker elimination to remove unused driver APIs, thereby reducing overall
footprint.

5.5.1 Global Configuration

Thereisasingle, global configuration file <ADUCMB02x_r oot >/ | ncl ude/ confi g

/ adi _gl obal _confi g. h, which needs to be added to a new project. We recommend using the
same approach for overriding the driver-specific configuration files as described below to override

the global feature set-up. For example, to overwrite the RTOS feature, set the corresponding macro
inadi _gl obal _confi g. h to0asshownin figure 22 below:

/*! Set this macro to 1 to enable multi-threaded support */
#defi ne ADI _CFG ENABLE RTOS SUPPORT 0

Figure 22. Global Configuration File Contents

5.5.2 Configuration Defaults

Two distinct types of configurations are managed in the driver configuration files: feature/function
enable/disable (such as removing unneeded code for slave-mode operation, DMA support, etc.) and
default values for the peripheral control registers. Each device driver uses these macros to control
feature inclusion and set controller registers during driver initialization.

Factory default driver configuration files (one per driver) are located in the <ADUCVBO2X _r oot >
/ 1 ncl ude/ conf i g directory, which you can edit for global changes or override them within
your project, for localized changes.

ADuUCM302x Device Family Pack User's Guide for Keil 28
August 2018

It is recommended that the default configuration files are not modified, but overridden by first
copying them to the local project directory and then modifying the files as needed.

5.5.3 Configuration Overrides

The default factory configuration files can be edited directly for global changes for all applications.
Individual overrides can be made by copying any configuration file(s) to the local project directory
and making the changes there. It is recommended to make a backup of the default file set before
making global changes.

In summary, there are three ways to override the default static configuration values:

1. Globaly by modifying the default factory default files for global changes.

2. Locally by copying the driver’s default configuration file into the application’s source folder.
Local edits can then be applied. Y ou must ensure that the application’s source folder appears
before the default | ncl ude\ conf i g folder in the project’ s pre-processor include path
option settings. Note: Local overrides (if any) are the recommended override method.

3. Dynamically by using the dynamic APIs to modify the configuration at run time. The
configuration APIs may be called at run-timeto alter adriver’s configuration. Static
configuration is preferred, however, asit will save both footprint and run-time cycles.

Please note that a combination of static and dynamic configuration is possible.

5.5.4 IVT Table Location

The Cortex-M3 processor core allows the Interrupt Vector Table (1VT) to be relocated. In this
release, we support a default placement of the IVT in ROM (FLASH) and allow it to be moved
from ROM to RAM during system startup. The pre-processor macro RELOCATE_IVT isused to
enable IVT relocation.

The default, statically-linked IVT placement in ROM is preferred as it will avoid wasting RAM
space and startup time to relocate the table. The static IVT cannot be used if the application needs
to alter the IVT content.

Alternatively, the IVT may be dynamically relocated during system startup from ROM to RAM for
applications that need to modify the IVT content. For example, by dynamically hooking/replacing
interrupt handlers or running an RTOS that requires patching interrupt handlers through a common
interrupt dispatcher. To support dynamic IVT relocation, add the RELOCATE_IVT macro to the
compiler pre-processor option tab. Doing so causes the IVT to be relocated during system reset
(see startup.c: ResetlSR() handler).

The default static IVT isaways present in ROM and is optionally copied to RAM under control of
the RELOCATE_IVT macro. See relevant source code in system files startup.c and system.c
(enclosed within the RELOCATE_IVT macro) for implementation details of the relocated IVT

ADuUCM302x Device Family Pack User's Guide for Keil 29
August 2018

memory allocation, relocation address and alignment attributes, physically copying the IVT and
updating the interrupt vector table offset register (V TOR) within the Cortex-M3 core System
Control Block (SCB). Oncethe IVT iscopied and VTOR iswritten with the new address, the
relocated interrupt vectors are active and can then be modified dynamically.

5.5.5 Interrupt Callbacks

In general, the device drivers take ownership of the various device interrupt handlersin order to
drive communication protocols, manage DMA data pumping, capture events, etc. Most device
drivers also offer application-level interrupt callbacks by giving the application an opportunity to
receive event notifications or perform some application-level task related to device interrupts.

Application callbacks are optional. They may be an integral component of an event-based system
or they may just tell the application when something happened. Application callbacks are always
made in response to device interrupts and are executed in context of the originating interrupt.

To receive interrupt callbacks, the application defines a callback handler function and registersit
with the device driver. The callback registration tells the device driver what application function
call to make asit processes device interrupts. Each driver has unique event notifications which are
passed back with the callback and describe what caused the interrupt. Some device drivers support
event filtering that allows the application to specify a subset of events upon which to receive
callbacks.

To use callbacks, the application defines a callback handler with the following prototype:

voi d cbHandl er (void *pcbParam uint32_t Event, void *pArg);

Where;

® pcbParam is an application-defined parameter that is given to the device driver as part of
the callback registration,

* Event isadevice-specific identifier describing the context of the callback, and

® pArgisan optional device-specific argument further qualifying the callback context (if
needed).

The application will then call into the device driver callback registration API to register the
callback, as:

ADI _xxx_RESULT_TYPE adi xxx_Regi sterCal | back (ADlI _xxx_DEV_HANDLE cons
t hDevice, ADI _CALLBACK const pfCall back, void *const pcbParan;

Where:

® XxxX isthe particular device driver,

ADuUCM302x Device Family Pack User's Guide for Keil 30

August 2018

* hDeviceisthe devicedriver handle,

e ADI_CALLBACK isatypedef (seeadi _i nt. h), describing the callback handler
prototype (cbHandler, in this case),

¢ pfCallback isthe function address of the application’s callback handler (cbHandler), and

® pcbParam is an application-defined parameter that is passed back to the application when
the application callback is dispatched. This parameter is used however the application
dictates, it is simple passed back through the callback to the application by the device driver
as-is. It may be used to differentiate device drivers (e.g., the device handle) if multiple
drivers or driver instances are sharing a common application callback.

Note: Application callbacks occur in context of the originating device interrupt, so extended
processing at the application level will impact interrupt dispatching. Typically, extended
application-level processing is done by some task after the callback is returned and the interrupt
handler has exited.

ADuUCM302x Device Family Pack User's Guide for Keil 31
August 2018

6 Device Driver APl Documentation

6.1 Device Driver APl Documentation

Complete documentation for the DFP is listed in the references section, at the top of this document.
Most of the documentation is provided in PDF format.

The API documentation for the device driversis also availablein HTML format as shown in
Figure 23. Device Driver Documentation. The HTML documentation is located in the
<ADUCMB02x_r oot >/ Docunent s/ ht ml folder.

To open the HTML documentation, double-click on the index.html file.

=l =
Q ‘@ C\inalog Devices\ADUCMINZAADUCMINZ EZKIRE O ~ ¢ H & ADUCM302x Device Drivers... ‘ | 0 S 8

55 & signals 2 Projects

ADUCM302x Device Drivers API Reference Manual Rrelesse 1.0.0.0

Main Page ‘ Modules. | Data Structures ~ | Q- Search

ADUCH Modules | Data Structures | Macros | Typedefs | Enumerations | Functions

M302x Device Drivers APl Referer
~ c
ADUCM302x_EZ-KIT Device Drivers . ADC Driver

Modules

ADXL363 Driver

BEEP Driver

CRC Device Driver MOdUIeS

Crypto Driver Static Configuration
Cycle Counting Framework

DMA Driver Data Structures

External Interrupt Driver
struct __ADI_ADC_BUFFER

Flash Driver
GPIO Driver
Global Static Configuration MaCrOS
126 Driver #define ADI_ADC_MEMORY_SIZE (43u + ADI_SEM_SIZE)
Power Driver #define ADI_ADC CHANNEL 0 (1u << Ou)
RNG Driver
#define ADI_ADC_CHANNEL_1 (1u << 1u)
RTC Driver - - -
S — #define ADI_ADC_CHANNEL 2 (1u << 2u)
SPORT Driver #define ADI_ADC_CHANNEL_3 (1u << 3u)
System Interfaces #define ADI_ADC_CHANNEL 4 (1u << 4u)
Timer Driver v|| #defne ADI_ADC_CHANNEL 5 (1u << 5u)
< i > #define ADI_ADC_CHANNEL 6 (1u << 6u)]

Generated on Fri May 12 2017 18:54:03 for ADuCM302x Device Drivers AP| Reference Manual by ﬁLoxy‘ge 1813

Figure 23. Device Driver Documentation

ADuUCM302x Device Family Pack User's Guide for Keil 32
August 2018

6.2 Appendix

6.2.1 CMSIS

The ADUCM302x Device Family Pack is compliant with the Cortex Microcontroller Software
Interface Standard. CM SIS prescribes a number of software organization aspects. One of the more
convenient aspects of the CM SIS compliance is the availability of various CM SIS run-time library
functions provided by the compiler vendor that implement many Cortex core access functions.
These CM SIS access functions are used throughout the ADuCM302x DFP device driver
implementation.

By wrapping up these Cortex core access functions into a compiler vendor library, the device
drivers and application programmer are able to access the Cortex core implementation in a safe and
reliable way. Examples of the CM SIS library access functions include functions to manage the
NVIC (Nested Vectored Interrupt Controller) interrupt priority, priority grouping, interrupt
enables, pending interrupts, active interrupts, etc.

Other CM SIS access functions include defining system startup, system clock and system timer
functions, functions to access processor core registers, "intrinsic" functions to generate Cortex code
that cannot be generated by | SO/IEC C, exclusive memory access functions, debug output
functions for ITM messaging, etc. CM SIS also defines a number of naming conventions and
various typedefs that are used throughout the ADUCM 302x DFP.

Please consult The Definitive Guide to the ARM Cortex-M3 [l reference or the www.arm.com
website for complete CM SIS details.

6.2.2 Interrupt Vector Table
The IVT isa 32-hit wide table containing mostly interrupt vectors. It consists of two regions:

* Thefirst sixteen (16) locations contain exception handler addresses. The highest location of
these addresses have fixed (pre-determined) priorities.

® The balance of the IVT contains peripheral interrupt handler addresses which are not
considered exceptions. Each of the peripheral interrupts has an individually programmable
interrupt priority and they are therefore sometimes referred to as "programmable” interrupts,
in contrast to the non-programmabl e (fixed-priority) exception handlers.

TheIVT isdeclared and initialized inthe st ar t up_<Devi ce>. c file. The organization of the
first 16 locations (0:15) of the IVT is prescribed for ARM Cortex M-class processors as follows:

® IVTI[O] = Initial Main Stack Pointer Vaue (MSP register)

ADuUCM302x Device Family Pack User's Guide for Keil 33
August 2018

http://www.arm.com/

The very first 32-bit value contained in the IVT is not an interrupt handler address at al. It isused

to convey an initial value for the processor’s main stack pointer (M SP) to the system start code. It

must point to avalid RAM areain which the various reset function calls may have avalid stacking
area (C-Runtime Stack).

* |VT[1] = Hardware Reset Interrupt Vector

The second 32-bit value of the IVT is defined to hold the system reset vector. Thisis also defined
in startup_<Device>.c. Thelocation isinitialized with the reset interrupt handler function. When
the system starts up, it calls the function pointed to by thislocation (once the boot kernel is
complete).

® |VT[2:15] = Non-Programmable System Exception Handlers

These locations contain various exception handlers, e.g., NMI, Hard Fault, Memory Manager
Fault, Bus Fault, etc. All of these handlers are given weak default bindings within the startup.c file,
insuring all exceptions have a safe "trapping" implementation.

* Baanceof IVT Contains Interrupt Vectors for Programmable I nterrupts

Theremaining IVT entries are mapped by the manufacture to the peripheras. In the case of the
ADuUCM302x processor, there are 64 (0-63) such peripheral interrupts. Each peripheral interrupt
has a dedicated interrupt priority register that may be programmed at run-time to manage interrupt
dispatching.

6.2.3 Startup_<Device>.c Content

The <ADUCMB02x _r oot >/ Sour ce/ ARM st art up_<Devi ce>. s fileisrequired for every
ADuUCM302x application. Thisfileislargely defined by the CM SIS standard and contains:

* Stack and Heap set-up
® Interrupt Vector Table

6.2.4 System_<Device>.c Content

Thefile <ADUCM302x_r oot >/ Sour ce/ syst em <Devi ce>. ¢ isanother CM SIS prescribed
file implementing a number of required CMSIS APIs (Systeminit())

The system_<Device>.cfileisarequired and integral component for every ADUCM 302x
application.

e Systeminit()

Thisisaprescribed CM SIS startup function that is required to be called at the very beginning of
user main(), immediately after the C Run-time Library has setup the system and called user main().
Nothing else should be done in user main() until after the Systeminit() call is complete.

ADuUCM302x Device Family Pack User's Guide for Keil 34
August 2018

The first and most critical task performed during Systeminit() is the activation of the (potentially)
relocated IVT. Any IVT relocation is done during the system reset handler under control of the
RELOCATE_IVT macro. If the IVT has been moved, it must then be activated during
Systeminit() by setting the Cortex core "Interrupt Vector Table Offset Register” in the Cortex Core
System Control Block (SCB->VTOR) to the address of the new IVT.

Until the VTOR isreset, the default FLASH-based IVT remains active. The relocated IVT
activation must be done before the application starts activating peripheras, but after the relocated
IVT data has been copied.

Other important tasks performed during Systeminit() include bringing the clocks into a known
state, configuring the PLL input source, and making the initial call to SystemCoreClockUpdate()
(below), which must always be done (even by the application) after making any clock changes.

¢ SystemCoreClockUpdate()

Thisis another prescribed CM SIS API. The task performed here is to update the internal clock
state variableswithin syst em <Devi ce>. ¢ after making any clock changes. Thisinsures that
subsequent application calls to SystemGetClockFrequency() can return the correct frequency to
device drivers attempting to configure themselves for serial BAUD rate, €etc., or otherwise query
the current system clock rate. SystemCoreClockUpdate() should always be called after any system
clock changes.

ADuUCM302x Device Family Pack User's Guide for Keil 35
August 2018

	Introduction
	Purpose
	Scope of this Manual
	Acronyms and Terms
	Conventions
	References
	Additional Information
	Manual Contents

	Product Overview
	Software System Overview
	Hardware System Overview

	Installation Components
	Keil Project Support Files
	SCT File
	Jlink Settings File
	Flash Loader Algorithm

	KEIL Project Options
	Options for Target
	Device Options
	Output
	Linker Listing
	User Setting
	C/C++ Setting
	ASM Setting
	Linker Setting
	Debugger Setting
	Debug Settings (J -Link/JTrace Setup and Connection)
	Utilities

	ADuCM302x System Overview
	Block Diagram and Driver Layout
	Boot-Time CRC Validation
	System Reset Strategy

	Application Configuration
	Application Initialization
	Static Pin Multiplexing
	UART Baud Rate Configuration Utility
	Driver Include Files
	Driver Configuration
	Global Configuration
	 Configuration Defaults
	Configuration Overrides
	IVT Table Location
	Interrupt Callbacks

	Device Driver API Documentation
	Device Driver API Documentation
	Appendix
	CMSIS
	Interrupt Vector Table
	Startup_<Device>.c Content
	System_<Device>.c Content

