
© 2018 Analog Devices, Inc.

http://www.analog.com

ADuCM302x Device Family Pack User's Guide for Keil

Version 3.1.0, August 2018

ADuCM302x Device Family Pack User's

Guide for Keil

http://analog.com

Contents

1 Introduction 4

1.1 Purpose 4

1.2 Scope of this Manual 4

1.3 Acronyms and Terms 5

1.4 Conventions 6

1.5 References 6

1.6 Additional Information 7

1.6.1 Manual Contents 7

2 Product Overview 8

2.1 Software System Overview 8

2.2 Hardware System Overview 8

3 Installation Components 10

3.1 Keil Project Support Files 10

3.1.1 SCT File 11

3.1.2 Jlink Settings File 12

3.1.3 Flash Loader Algorithm 12

3.2 KEIL Project Options 12

3.2.1 Options for Target 12

3.2.2 Device Options 13

3.2.3 Output 13

3.2.4 Linker Listing 14

3.2.5 User Setting 15

3.2.6 C/C++ Setting 16

3.2.7 ASM Setting 16

3.2.8 Linker Setting 17

3.2.9 Debugger Setting 18

3.2.10 Debug Settings (J -Link/JTrace Setup and Connection) 18

3.2.11 Utilities 20

4 ADuCM302x System Overview 22

4.1 Block Diagram and Driver Layout 22

4.2 Boot-Time CRC Validation 23

4.3 System Reset Strategy 23

5 Application Configuration 25

5.1 Application Initialization 25

5.2 Static Pin Multiplexing 26

5.3 UART Baud Rate Configuration Utility 27

5.4 Driver Include Files 27

5.5 Driver Configuration 28

5.5.1 Global Configuration 28

5.5.2 Configuration Defaults 28

5.5.3 Configuration Overrides 29

5.5.4 IVT Table Location 29

5.5.5 Interrupt Callbacks 30

6 Device Driver API Documentation 32

6.1 Device Driver API Documentation 32

6.2 Appendix 33

6.2.1 CMSIS 33

6.2.2 Interrupt Vector Table 33

6.2.3 Startup_<Device>.c Content 34

6.2.4 System_<Device>.c Content 34

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

4

1 Introduction

1.1 Purpose

This document describes the ADuCM302x Device Family Pack (DFP) for Keil uVision and its use.
The ADuCM302x processor integrates an ARM Cortex-M3 microcontroller with various on-chip
peripherals within a single package.

1.2 Scope of this Manual

This document describes how to install and work with the Analog Devices ADuCM302x Device
Family Pack. This document explains what is included with the package and how to configure the
software to run the example applications that accompanies this package.

This document is intended for engineers who integrate ADI’s device driver libraries with other
software to build a system based on the ADuCM302x processor. This document assumes
background in ADI’s ADuCM302x processor.

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

5

1.3 Acronyms and Terms

ADI Analog Devices, Inc.

API Application Programming Interface

ARM Advanced RISC Machine

CMSIS Cortex Microcontroller Software Interface Standard

Cortex A series of ARM microcontroller core designs

CRC Cyclic Redundancy Check

DFP Device Family Pack

HRM Hardware Reference Manual

ISR Interrupt Service Routine

IVT Interrupt Vector Table

JTAG Joint Test Action Group

NVIC Nested Vectored Interrupt Controller

RISC Reduced Instruction Set Computer

RTOS Real-Time Operating System

TRACE Debugging with TRACE access port

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

6

1.

a.

b.

c.

d.

e.

2.

a.

b.

3.

4.

a.

b.

5.

1.4 Conventions

Throughout this document, we refer to two important installation locations: the ADuCM302x
Device Family Pack and the Keil toolchain installation root. Each of these packages can be
installed in various places, which are referred to as follows:

<Keil_root>

The default KEIL Pack installer places the product at location C:
. There will be the following folder for \Keil_v5\ARM\Pack\AnalogDevices

ADuCM302x within that location called .ADuCM302x_DFP

t><ADuCM302x_roo

The directory C:\Keil_v5\ARM\Pack\AnalogDevices\ADuCM302x_DFP\3.1.0
which contains the content of the ADuCM302x KEIL Pack file.

1.5 References

Analog Devices : <ADuCM302x_root>/Documents

ADuCM302x_DFP_3.1.0_Release_Notes.pdf

ADuCM302x_DFP_Device_Drivers_UsersGuide.pdf

ADuCM302x_DFP_Getting_Started_Guide_Keil.pdf (brief introduction)

ADuCM302x_DFP_Users_Guide_Keil.pdf (this document)

ADuCM302x Device Drivers API Reference Manual (and hyperlinked)Docs/html

For Keil []<Keil_root>/ARM/Hlp http://www.keil.com

Keil MDK for Cortex-M microcontroller.

Release notes.

The Definitive Guide to the ARM CORTEX-M3, Joseph Yiu, 2 edition.nd

Every Cortex programmer’s bible; a must-have reference.

Micrium []http://micrium.com

uC/OS-II RTOS for ARM Cortex-M3

uC/OS-II User’s Manual

SEGGER J-Link Emulator []http://www.segger.com

http://www.keil.com
http://micrium.com/
http://www.segger.com/

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

7

1.6 Additional Information

For more information on the latest ADI processors, silicon errata, code examples, development
tools, system services and devices drivers, technical support and any other additional information,
please visit our website at www.analog.com/processors.

1.6.1 Manual Contents

Product Overview

Installation Components

ADuCM302x System Overview

Build Configurations

Examples

Device Driver API Documentation

http://www.analog.com/processors
https://labrea.ad.analog.com/confluence/display/DOCBSPCM302XKEIL/.Examples+v2.0.0

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

8

2 Product Overview

2.1 Software System Overview

The ADuCM302x EZ Kit BSP provides files which are needed to write application software for the
ADuCM302x processor. The product consists of a boot kernel, startup, system and driver source
code, driver configuration settings, driver libraries, sample applications and associated
documentation (see Figure 1. Software Overview).

The ADuCM302x BSP is designed to work with KEIL uVision in CMSIS pack format for ARMII.a

.

Figure 1. Software Overview

2.2 Hardware System Overview

The examples provided with the ADuCM302x BSP run on the Analog Devices’ ADuCM302x-EZ-
Board evaluation board. The evaluation board is connected to the host computer using a Segger J-
Link lite emulator over the evaluation board’s JTAG or TRACE debug port interface connectors.
External I/O signals and system hardware are connected to the evaluation board connectors as
shown in Figure 3, ADuCM302x EZ-Board.

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

9

Figure 2. Hardware Overview

Figure 3. ADuCM302x EZ-Board

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

10

3 Installation Components

The KEIL MDK or later must be purchased and installed prior to http://www2.keil.com/mdk5
installing the ADuCM302x Device Family Pack. Follow the instructions in the KEIL MDK for
ARM product installation procedure (Keil uVision Full license version).

Keil toolchain support files are placed with the Keil installation folder (e.g. C:

). This also includes files for \Keil_v5\ARM\Pack\AnalogDevices\ADuCM302x_DFP

flash loading, debugging, etc.

The ADuCM302x EZ-KIT Lite (startup code, device drivers, libraries, examples, tools,
documentation, etc.) are placed at Keil_v5\ARM\Pack\AnalogDevices\ADuCM302x_DFP

.\x.y.z

Figure 4. Installation Directory Structure

3.1 Keil Project Support Files

This section documents the KEIL-specific details of the ADuCM302x Device Family Pack. A
working knowledge of the KEIL toolchain and environment is assumed. See the KEIL reference
materials for details of installing, configuring and using the KEIL tools. The following are the list
of important files contained in the ADuCM302x DFP, necessary to build applications in the Keil
uVision environment.

SCT File

http://www2.keil.com/mdk5

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

11

Jlink debugger setting file (JLinkSettings.ini)

Flash Loader Algorithm (.FLM)

3.1.1 SCT File

A .SCT file contains the memory configuration of the ADuCM302x core, this file can be
customized as per the application needs.

A SCT file can be stored in the same path as a Keil project file. The SCT file in the project can be
used to define and allocate various memory regions:

Internal SRAM size

FLASH size

Placement of all code and data blocks

Reserves memory for post-link processing (CRC checksums, parity, etc)

The SCT file can be used to:

Define Memory “Regions” (size, location, alignment, etc.).

FLASH Area, Internal SRAM Code, SRAM Data, Special-Purpose, etc.

Internal SRAM Bank Partition.

Define “Blocks” for Specific Tasks

Runtime Stack, Heap Space, etc.

Size and Alignment.

Specify Runtime “Initialization” Sections

Linker and C-Runtime Startup Collaboration.

Compress Code/Data for Expansion into Internal SRAM at Startup.

Manage Code and Data “Placements” within Regions

Explicit Interrupt Vector Table (IVT) Placement.

Read-Only, Read-Write Attribute.

Special Section Handling.

Default Flash, Code and Data Placements.

Explicit Stack and Heap Block Placements.

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

12

3.1.2 Jlink Settings File

The J link setting file (JLinkSettings.ini) is present in each example project folder, this file helps
the J-Link debugger to retain the device configuration every time a debugger session is initiated. If
this file is not present the user has to manually select the device in the jlink settings.

3.1.3 Flash Loader Algorithm

The Flash Loader is used to burn application executables to the on-chip flash over the debug port
(using the emulator). The application may then be executed directly from flash.

The flash algorithm is stored in the following path in the Pack Installation C:

\Keil_v5\ARM\Pack\AnalogDevices\ADuCM302x_DFP\x.y.z\Flash.

Upon successfully connecting to the device, the flash algorithm should be selected to download the
image into the flash device (Refer to Section J-Link/J-Trace - Setup and Connection).

3.2 KEIL Project Options

3.2.1 Options for Target

The Target tab in the projects Options for Target allows the user to set various project
configuration described in the following section.

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

13

Figure 5. Project Options shows the project configuration options for the ADuCM3029
processor

3.2.2 Device Options

The Device tab in the Target Options allows the user to choose the target processor variant for
which the project is being built. This selection is very important because it drives a number of
other project settings, such as selecting the correct flash downloader from the pack file (see Figure
6. Device Selection).

Figure 6. Device Selection

3.2.3 Output

The Output tab in the Options for Target allows the user to set the executable name or create a
library file, and select the output file format that can be generated by the ARM CC compiler as
shown in the Figure 7. Output Settings.

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

14

Figure 7. Output Settings

3.2.4 Linker Listing

The Listing tab in the Options for Target allows the user to select the Assembler listing and the
linker map file for the KEIL ARM CC compiler as shown in the Figure 8. Linker Listing.

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

15

Figure 8. Linker Listing

3.2.5 User Setting

The User tab in the Options for Target allows the user to set any user command for a pre and post
build for the KEIL ARM CC compiler as shown in the Figure 9. User Setting below.

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

16

Figure 9. User Setting

3.2.6 C/C++ Setting

The C/C++ tab in the Options for Target allows the user to set any compiler flags, defines, include
search paths, optimization levels into the build for the KEIL ARM CC compiler as shown in the
Figure 10. C/C++ Setting below.

Figure 10. C/C++ Setting

3.2.7 ASM Setting

The ASM tab in the Options for Target allows the user to set any Assembler flags, defines, include
search paths, PIP modes into the build for the KEIL ARM CC compiler as shown in the Figure 11.
ASM Setting below.

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

17

Figure 11. ASM Setting

3.2.8 Linker Setting

The Linker tab in the Options for Target allows the user to set the path for the memory
configuration file (SCT file) or to set custom memory configuration in the tab itself for the KEIL
ARM CC compiler as shown in the Figure 12. Linker Setting below.

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

18

Figure 12. Linker Setting

3.2.9 Debugger Setting

The Debug tab in the Options for Target allows the user to configure the Segger J-Link and its
parameters. See Figure 13. Debugger Setup below.

Figure 13. Debugger Setting

3.2.10 Debug Settings (J -Link/JTrace Setup and Connection)

The Settings under the main Debug tab in the Options for Target contains three sub settings
(Debug, Trace, Flash Download) these allow the user to configure the Segger J-Link debugger and
its modes (SWD/JTAG). Figure 14. Debugger Setting below shows the settings for a sample
project.

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

19

Figure 14. J-Link/JTrace Setting

Trace options can be set-up on a per project basis too. See Figure 15. Trace Setting below.

Figure 15. Trace Setting

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

20

The Flash Algorithm File has to be added as shown in the figure below on a per project basis. After
adding the algorithm the config window will look as shown in the Figure 16. Flash Download
Setting.

Figure 16. Flash Download Setting

3.2.11 Utilities

The Utilities tab in the Options for Target allows the user to set debugger parameters and choose
custom flash utilities (if any) as shown in the Figure 17. Utilities below.

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

21

Figure 17. Utilities

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

22

4 ADuCM302x System Overview

4.1 Block Diagram and Driver Layout

The Peripheral Device Drivers and System Services installed with this software package are used
to configure and use various ADuCM302x on-chip peripherals. Figure 18. Peripherals and Driver
Source illustrates the available peripherals and interconnects on the ADuCM302x processor and
corresponding source files in the directory.<ADuCM302x_root>/Source

In general, the driver sources are located in the directory. The <ADuCM302x_root>/Source

include file path must also be specified in the project’s <ADuCM302x_root>/Include

compiler/preprocessor options (see section 3.2.3 C/C++ Compiler – Preprocessor).

Figure 18. Peripherals and Driver Source

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

23

4.2 Boot-Time CRC Validation

The ADuCM302x system reset interrupt vector is hard-coded on-chip to execute a built-in pre-boot
kernel that performs a number of critical housekeeping tasks before executing the user provided
reset vector. Some of those tasks include initializing the JTAG/Serial-Wire debug interface and
validating flash integrity.

One of the primary tasks of the pre-boot kernel is to validate the integrity of the Flash0/Page0
region (first 2k of flash). This is done by comparing a pre-generated CRC code (embedded in the
executable code image at build-time) against a boot-time-generated CRC value of Flash0/Page0
using the on-chip CRC hardware. The Page0 embedded CRC signature is stored at reserved
location 0x000007FC.

ADuCM302x KEIL support does not currently compute and implant the CRC signature into the
executable during the target build process (as a post-link build command). Therefore at boot time,
when the kernel computes a run-time Flash0/Page0 CRC value using the on-chip CRC hardware
and compares it against the value at the last CRC page, by default applications are built to omit the
CRC check.

4.3 System Reset Strategy

All projects require the reset strategy to be set to "normal" in order to enable the emulator to
download and debug programs on target hardware properly. The reset strategy is managed in the
project options dialog. Selecting the correct reset strategy is both toolchain and emulator specific
(see Figure 19. System Reset Setting). To set/verify the reset strategy on the Keil toolchain, click
on the "Options for Target", then browse to the sub-dialog for "Debug->Settings". Under the
"Reset" drop-down, select the "Normal" option.

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

24

Figure 19. System Reset Setting

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

25

5 Application Configuration

Application initialization and configuration will vary depending on the chosen operating mode.
The modes of operation include:

Non-RTOS

The application is built without an RTOS.

RTOS

The application is built with an RTOS. In this mode of operation the drivers can be
RTOS-Aware or RTOS-Unaware.

RTOS-Aware Drivers

In this C-Macro controlled mode of operation the driver’s source code will
include the following features:

Interrupt Service Routines (ISR) with RTOS API calls used to
potentially cause a task context switch.

Semaphores control communication between task-level code and ISR
level code.

Mutexes control access to access to shared resources.

RTOS-Unaware Drivers.

In this C-Macro controlled mode of operation the driver’s source code will not
include the features listed above.

Each of the modes is explained in more detail in the sections below. There are some initialization
features that are common to all modes of operation.

5.1 Application Initialization

The functions SystemInit() and adi_initpinmux() are used to initialize an application. SystemInit()
is required to initialize the ARM Cortex CMSIS infrastructure and adi_initpinmux() initializes the
peripheral pin multiplexing, if static pin multiplexing is used (see section 5.1.2 Static Pin
Multiplexing). Figure 20. Application Initialization below shows these functions being called from
the user application main().

int main()
{
 /* Initialize system (required) */

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

26

 SystemInit(); /* system_<Device>.c */

 /* Initialize Pin Multiplexing (optional) */

 adi_initpinmux(); /* Auto-generated source file using PinMux
Utility */

 ...

 return 0;
}

Figure 20. Application Initialization

5.2 Static Pin Multiplexing

Included with the ADuCM302x EZ Kit Lite® Board Support Package is a Pin Multiplexing
application which is capable of generating code to set all the port MUX and FER registers
statically for all peripherals in a single call. The Pin Multiplexing application is a Java application
which can be run from a command prompt:

Location: .<ADuCM302x_root>/tools/PinMuxUI

There are two versions of the Java application included with the Board Support Package (a 32-bit
and 64-bit version). You will need to use the correct java.exe executable to run the application.

32-bit version: java -jar PinMuxUI_1.0.0.x_x86.jar

To run the 32-bit PinMux Stand-alone Utility, you should use the java.exe that is
installed in C:\ \Java\jre8\bin (assuming that you have installed Program Files (x86)
Java version 8).

64-bit version: java -jar PinMuxUI_1.0.0.x_x86_64.jar

To run the 64-bit PinMux Stand-alone Utility, you should use the java.exe that is
installed in C:\ \Java\jre8\bin (assuming that you have installed Java Program Files
version 8).

After starting the application, you must first select the correct processor type from the top-right
drop-down list-box. You are then able to select the desired peripherals to be enabled. The
application will not allow conflicting peripherals to be selected. The Generate Code button will
create a C source file that sets the GPIO port configuration registers based on the peripherals and
functions selected. The C source file should be manually added to your project. The C source file
has a function adi_initpinmux() which can be called from the application source (see Figure 21. Pin
Multiplexing Application) to set up the port MUX and FER registers.

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

27

Figure 21. Pin Multiplexing Application

Note: The pinmux code generator is the preferred method of configuring port multiplexing. It
avoids multiple dynamic calls to each driver and allows all pin multiplexing to be done once,
which reduces both footprint and run-time overhead.

5.3 UART Baud Rate Configuration Utility

Included with the ADuCM302x EZ Kit Lite® Board Support Package is a UartDivCalculator
utility which is capable of providing the baudrate configuration values for a specified clock. This
utility is available to help the user statically configure their Baudrate. The utility can also provide
the baudrate configuration values for a set of baudrates.

5.4 Driver Include Files

The C/C++ Compiler Preprocessor tab is used to define the additional include directories needed to
build the project. The device drivers only require the following search paths

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

28

1.

2.

<ADuCM302x_root>/Include

<ADuCM302x_root>/Include/config

to be added from the BSP installation. Applications may need to augment the pre-processor search
path with their own requirements.

5.5 Driver Configuration

Most of the drivers are statically configurable. Their configuration is controlled via C/C++ pre-
processor macros that are managed in a common area.

Static initialization is preferred, as it offers two advantages over dynamic (API) initializations:

It reduces the run-time driver startup time (and complexity) of initializing each driver
through various driver configuration APIs.

It allows programmers to bypass most of the driver configuration APIs altogether, thereby
allowing linker elimination to remove unused driver APIs, thereby reducing overall
footprint.

5.5.1 Global Configuration

There is a single, global configuration file <ADuCM302x_root>/Include/config
, which needs to be added to a new project. We recommend using the /adi_global_config.h

same approach for overriding the driver-specific configuration files as described below to override
the global feature set-up. For example, to overwrite the RTOS feature, set the corresponding macro
in to 0 as shown in figure 22 below:adi_global_config.h

/*! Set this macro to 1 to enable multi-threaded support */
#define ADI_CFG_ENABLE_RTOS_SUPPORT 0

Figure 22. Global Configuration File Contents

5.5.2 Configuration Defaults

Two distinct types of configurations are managed in the driver configuration files: feature/function
enable/disable (such as removing unneeded code for slave-mode operation, DMA support, etc.) and
default values for the peripheral control registers. Each device driver uses these macros to control
feature inclusion and set controller registers during driver initialization.

Factory default driver configuration files (one per driver) are located in the <ADuCM302x_root>
 directory, which you can edit for global changes or override them within /Include/config

your project, for localized changes.

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

29

1.

2.

3.

It is recommended that the default configuration files are not modified, but overridden by first
copying them to the local project directory and then modifying the files as needed.

5.5.3 Configuration Overrides

The default factory configuration files can be edited directly for global changes for all applications.
Individual overrides can be made by copying any configuration file(s) to the local project directory
and making the changes there. It is recommended to make a backup of the default file set before
making global changes.

In summary, there are three ways to override the default static configuration values:

Globally by modifying the default factory default files for global changes.

Locally by copying the driver’s default configuration file into the application’s source folder.
Local edits can then be applied. You must ensure that the application’s source folder appears
before the default folder in the project’s pre-processor include path Include\config

option settings. Note: Local overrides (if any) are the recommended override method.

Dynamically by using the dynamic APIs to modify the configuration at run time. The
configuration APIs may be called at run-time to alter a driver’s configuration. Static
configuration is preferred, however, as it will save both footprint and run-time cycles.

Please note that a combination of static and dynamic configuration is possible.

5.5.4 IVT Table Location

The Cortex-M3 processor core allows the Interrupt Vector Table (IVT) to be relocated. In this
release, we support a default placement of the IVT in ROM (FLASH) and allow it to be moved
from ROM to RAM during system startup. The pre-processor macro RELOCATE_IVT is used to
enable IVT relocation.

The default, statically-linked IVT placement in ROM is preferred as it will avoid wasting RAM
space and startup time to relocate the table. The static IVT cannot be used if the application needs
to alter the IVT content.

Alternatively, the IVT may be dynamically relocated during system startup from ROM to RAM for
applications that need to modify the IVT content. For example, by dynamically hooking/replacing
interrupt handlers or running an RTOS that requires patching interrupt handlers through a common
interrupt dispatcher. To support dynamic IVT relocation, add the RELOCATE_IVT macro to the
compiler pre-processor option tab. Doing so causes the IVT to be relocated during system reset
(see startup.c: ResetISR() handler).

The default static IVT is always present in ROM and is optionally copied to RAM under control of
the RELOCATE_IVT macro. See relevant source code in system files startup.c and system.c
(enclosed within the RELOCATE_IVT macro) for implementation details of the relocated IVT

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

30

memory allocation, relocation address and alignment attributes, physically copying the IVT and
updating the (VTOR) within the Cortex-M3 core System interrupt vector table offset register
Control Block (SCB). Once the IVT is copied and VTOR is written with the new address, the
relocated interrupt vectors are active and can then be modified dynamically.

5.5.5 Interrupt Callbacks

In general, the device drivers take ownership of the various device interrupt handlers in order to
drive communication protocols, manage DMA data pumping, capture events, etc. Most device
drivers also offer application-level interrupt callbacks by giving the application an opportunity to
receive event notifications or perform some application-level task related to device interrupts.

Application callbacks are optional. They may be an integral component of an event-based system
or they may just tell the application when something happened. Application callbacks are always
made in response to device interrupts and are .executed in context of the originating interrupt

To receive interrupt callbacks, the application defines a callback handler function and registers it
with the device driver. The callback registration tells the device driver what application function
call to make as it processes device interrupts. Each driver has unique event notifications which are
passed back with the callback and describe what caused the interrupt. Some device drivers support
event filtering that allows the application to specify a subset of events upon which to receive
callbacks.

To use callbacks, the application defines a callback handler with the following prototype:

void cbHandler (void *pcbParam, uint32_t Event, void *pArg);

Where:

pcbParam is an application-defined parameter that is given to the device driver as part of
the callback registration,

Event is a device-specific identifier describing the context of the callback, and

pArg is an optional device-specific argument further qualifying the callback context (if
needed).

The application will then call into the device driver callback registration API to register the
callback, as:

ADI_xxx_RESULT_TYPE adi_xxx_RegisterCallback (ADI_xxx_DEV_HANDLE cons
t hDevice, ADI_CALLBACK const pfCallback, void *const pcbParam);

Where:

xxx is the particular device driver,

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

31

hDevice is the device driver handle,

ADI_CALLBACK is a typedef (see), describing the callback handler adi_int.h

prototype (cbHandler, in this case),

pfCallback is the function address of the application’s callback handler (cbHandler), and

pcbParam is an application-defined parameter that is passed back to the application when
the application callback is dispatched. This parameter is used however the application
dictates, it is simple passed back through the callback to the application by the device driver
as-is. It may be used to differentiate device drivers (e.g., the device handle) if multiple
drivers or driver instances are sharing a common application callback.

Note: Application callbacks occur in context of the originating device interrupt, so extended
processing at the application level will impact interrupt dispatching. Typically, extended
application-level processing is done by some task after the callback is returned and the interrupt
handler has exited.

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

32

6 Device Driver API Documentation

6.1 Device Driver API Documentation

Complete documentation for the DFP is listed in the references section, at the top of this document.
Most of the documentation is provided in PDF format.

The API documentation for the device drivers is also available in HTML format as shown in
Figure 23. Device Driver Documentation. The HTML documentation is located in the

 folder.<ADuCM302x_root>/Documents/html

To open the HTML documentation, double-click on the index.html file.

Figure 23. Device Driver Documentation

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

33

6.2 Appendix

6.2.1 CMSIS

The ADuCM302x Device Family Pack is compliant with the Cortex Microcontroller Software
Interface Standard. CMSIS prescribes a number of software organization aspects. One of the more
convenient aspects of the CMSIS compliance is the availability of various CMSIS run-time library
functions provided by the compiler vendor that implement many Cortex core access functions.
These CMSIS access functions are used throughout the ADuCM302x DFP device driver
implementation.

By wrapping up these Cortex core access functions into a compiler vendor library, the device
drivers and application programmer are able to access the Cortex core implementation in a safe and
reliable way. Examples of the CMSIS library access functions include functions to manage the
NVIC (Nested Vectored Interrupt Controller) interrupt priority, priority grouping, interrupt
enables, pending interrupts, active interrupts, etc.

Other CMSIS access functions include defining system startup, system clock and system timer
functions, functions to access processor core registers, "intrinsic" functions to generate Cortex code
that cannot be generated by ISO/IEC C, exclusive memory access functions, debug output
functions for ITM messaging, etc. CMSIS also defines a number of naming conventions and
various typedefs that are used throughout the ADuCM302x DFP.

Please consult reference or the The Definitive Guide to the ARM Cortex-M3 [III] www.arm.com
website for complete CMSIS details.

6.2.2 Interrupt Vector Table

The IVT is a 32-bit wide table containing mostly interrupt vectors. It consists of two regions:

The first sixteen (16) locations contain exception handler addresses. The highest location of
these addresses have fixed (pre-determined) priorities.

The balance of the IVT contains peripheral interrupt handler addresses which are not
considered exceptions. Each of the peripheral interrupts has an individually programmable
interrupt priority and they are therefore sometimes referred to as "programmable" interrupts,
in contrast to the non-programmable (fixed-priority) exception handlers.

The IVT is declared and initialized in the file. The organization of the startup_<Device>.c

first 16 locations (0:15) of the IVT is prescribed for ARM Cortex M-class processors as follows:

IVT[0] = Initial Main Stack Pointer Value (MSP register)

http://www.arm.com/

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

34

The very first 32-bit value contained in the IVT is not an interrupt handler address at all. It is used
to convey an initial value for the processor’s main stack pointer (MSP) to the system start code. It
must point to a valid RAM area in which the various reset function calls may have a valid stacking
area (C-Runtime Stack).

IVT[1] = Hardware Reset Interrupt Vector

The second 32-bit value of the IVT is defined to hold the system reset vector. This is also defined
in startup_<Device>.c. The location is initialized with the reset interrupt handler function. When
the system starts up, it calls the function pointed to by this location (once the boot kernel is
complete).

IVT[2:15] = Non-Programmable System Exception Handlers

These locations contain various exception handlers, e.g., NMI, Hard Fault, Memory Manager
Fault, Bus Fault, etc. All of these handlers are given weak default bindings within the startup.c file,
insuring all exceptions have a safe "trapping" implementation.

Balance of IVT Contains Interrupt Vectors for Programmable Interrupts

The remaining IVT entries are mapped by the manufacture to the peripherals. In the case of the
ADuCM302x processor, there are 64 (0-63) such peripheral interrupts. Each peripheral interrupt
has a dedicated interrupt priority register that may be programmed at run-time to manage interrupt
dispatching.

6.2.3 Startup_<Device>.c Content

The file is required for every <ADuCM302x_root>/Source/ARM/startup_<Device>.s

ADuCM302x application. This file is largely defined by the CMSIS standard and contains:

Stack and Heap set-up

Interrupt Vector Table

6.2.4 System_<Device>.c Content

The file is another CMSIS prescribed <ADuCM302x_root>/Source/system_<Device>.c

file implementing a number of required CMSIS APIs (SystemInit())

The system_<Device>.c file is a required and integral component for every ADuCM302x
application.

SystemInit()

This is a prescribed CMSIS startup function that is required to be called at the very beginning of
user main(), immediately after the C Run-time Library has setup the system and called user main().
Nothing else should be done in user main() until the SystemInit() call is complete.after

ADuCM302x Device Family Pack User's Guide for Keil
August 2018

35

The first and most critical task performed during SystemInit() is the activation of the (potentially)
relocated IVT. Any IVT relocation is done during the system reset handler under control of the

 macro. If the IVT has been moved, it must then be activated during RELOCATE_IVT
SystemInit() by setting the Cortex core "Interrupt Vector Table Offset Register" in the Cortex Core
System Control Block (SCB->VTOR) to the address of the new IVT.

Until the VTOR is reset, the default FLASH-based IVT remains active. The relocated IVT
activation must be done the application starts activating peripherals, but the relocated before after
IVT data has been copied.

Other important tasks performed during SystemInit() include bringing the clocks into a known
state, configuring the PLL input source, and making the initial call to SystemCoreClockUpdate()
(below), which must always be done (even by the application) after making any clock changes.

SystemCoreClockUpdate()

This is another prescribed CMSIS API. The task performed here is to update the internal clock
state variables within after making any clock changes. This insures that system_<Device>.c

subsequent application calls to SystemGetClockFrequency() can return the correct frequency to
device drivers attempting to configure themselves for serial BAUD rate, etc., or otherwise query
the current system clock rate. SystemCoreClockUpdate() should always be called after any system
clock changes.

	Introduction
	Purpose
	Scope of this Manual
	Acronyms and Terms
	Conventions
	References
	Additional Information
	Manual Contents

	Product Overview
	Software System Overview
	Hardware System Overview

	Installation Components
	Keil Project Support Files
	SCT File
	Jlink Settings File
	Flash Loader Algorithm

	KEIL Project Options
	Options for Target
	Device Options
	Output
	Linker Listing
	User Setting
	C/C++ Setting
	ASM Setting
	Linker Setting
	Debugger Setting
	Debug Settings (J -Link/JTrace Setup and Connection)
	Utilities

	ADuCM302x System Overview
	Block Diagram and Driver Layout
	Boot-Time CRC Validation
	System Reset Strategy

	Application Configuration
	Application Initialization
	Static Pin Multiplexing
	UART Baud Rate Configuration Utility
	Driver Include Files
	Driver Configuration
	Global Configuration
	 Configuration Defaults
	Configuration Overrides
	IVT Table Location
	Interrupt Callbacks

	Device Driver API Documentation
	Device Driver API Documentation
	Appendix
	CMSIS
	Interrupt Vector Table
	Startup_<Device>.c Content
	System_<Device>.c Content

