ANALOG
DEVICES

AHEAD OF WHAT'S POSSIBLE™

Device Drivers User Guide

Device Drivers User Guide © 2018 Analog Devices, Inc.
Version 1.0.0, August 2018 http://www.analog.com

http://analog.com

Contents

1 User Guide

1.1 Features Supported by Device Drivers
1.2 Device Driver Operating Modes

121
1.2.2
1.2.3

Blocking mode
Non-Blocking mode for all devices
Callback mode

1.3 Device Driver API Reference

131
1.3.2
1.3.3
134
1.35
1.3.6
1.3.7
1.3.8

Open/Close

Non-Blocking Mode APIs and Buffer Ownership
Non blocking buffer transaction APIs
Non-Blocking Peek Functions

Blocking Mode APIs

Switching Between Interrupt and DMA Mode
Using Callback Mode

Peripheral Error Reporting

1.4 Moativation for Avoiding Callbacks

O© N O o o0~ BB W WW

[el e
oUW N R

1 User Guide

This document provides the guidelines for using the Analog Devices device driversincluded in the
Board Support Package. This document is specific to the bus drivers such as SPI, 12C, SPORT and
UART. The other drivers such as GPIO, Timers, Accelerometers does not follow acommon API
model.

1.1 Features Supported by Device Drivers

The device drivers;

are simpleto use;

have aminimal code and data footprint;

add minimal run-time overhead;

do not require memory copying between driver and application;

do not require dynamic memory allocation by Device drivers;

support switching between DMA mode and interrupt mode at run-time;

support reentrancy but are not thread safe (same instance of the driver cannot be used from
two different threads)

are MISRA-C 2012 compliant.

1.2 Device Driver Operating Modes

The drivers operate in one of three operating modes of interaction, which determine how the driver
and application interact:

1.

2.

Blocking mode. This mode is entered when ablocking API is called.

Non-Blocking mode. This mode is entered when anon-blocking API is called where no
callback is registered.

Callback mode. This mode is entered when anon-blocking API is called where a callback is
registered.

These modes are mutually exclusive with one another. An application is not alowed to mix these
modes. The modes are described in more detail in the following sections.

Depending on the peripheral, adriver may also have a choice of modes for internal operation:

Interrupt mode.

Device Drivers User Guide
August 2018

* DMA mode.

These modes of internal operation are selected separately from the interaction modes of Blocking,
Non-Blocking and Callback mode.

1.2.1 Blocking mode

In blocking mode, aread or write call does not return until the read or write transaction has
completed.

When operating in an RTOS environment, atask will yield the processor when making a blocking
call. The RTOS will schedule in another task that is ready to run. The blocked task will be placed
back on the ready to run queue upon completion of the read or write transaction.

In anon-RTOS environment, there is only one thread of execution. A call to ablocking APl will
result in the thread "spinning" (or ssmply, waiting) until the read or write transaction completes.

See Blocking Mode APIs for more information on entering blocking mode

1.2.2 Non-Blocking mode for all devices

In non-blocking mode, aread or write call does returnsimmediately, even if the read or write
transaction has not completed yet. The driver will finish the read or write transaction. It isthe
application's responsibility to synchronize with the transaction completion.

The synchronization mechanism that the application must use is detailed in Non-blocking
Transactions and Buffer Ownership. A driver is placed into non-blocking mode simply by calling
the non-blocking read or write APIs when no callback is registered. See section Non-blocking
Transactions and Buffer Ownership for information about non-blocking read and write APIs.

1.2.3 Callback mode

Similar to non-blocking mode, in callback mode, aread or write call returns immediately. It does
not wait for the transaction to complete. Unlike non-blocking mode, the synchronization
mechanism is an application-specified Callback. An application will pass a Callback to the device
driver to be called upon completion of aread or write transaction. The device driver executes the
callback to an application-specified routine when the read or write transaction completes or when
an error occurs.

A driver is placed into callback mode simply by registering a callback with the device driver. More
information on Callback mode can be found in Using Callback Mode.

Device Drivers User Guide
August 2018

1.3 Device Driver APl Reference

The following section provides an overview of the device driver APIs. Each API will indicate to
which of the three operation modes the API is applicable. Some APIs can be used in all modes,
while others are specific to just one or two modes of operation.

Syntactic conventions used in this overview:

Each driver will have APl names unique to the controller. For example,
adi _i2c_Open

Is specific to the 12C controller while:

adi _spi _Open

is specific to the SPI controller. However, in this APl overview, controller-independent syntax is
used to indicate that the API is applicableto all controllers. Therefore,

adi _xxx_Open
Is used where the "xxx" implies that the API is applicable to all controller drivers.

A number of APIsthat have receive and transmit versions of the APIs, indicated by "Rx" and "Tx"
in the API names, for example adi _xxx_CGet RxBuf f er andadi _xxx_Get TxBuf f er.
When discussing common behavior of these APIs, the "Rx"/"Tx" portion is omitted, for example
adi _xxx_GCet Buf fer.

The following table shows which APIs are valid in the particular device driver operating mode.

Blocking Non-Blocking Callback

adi_xxx_Read/Write Yes No No
adi_xxx_SubmitBuffer No Yes Yes
adi_xxx_GetBuffer No Yes No
adi_xxx_IsBuffer Available No Yes No
adi_xxx_Close No Yes Yes

In the sequence diagrams, blue represents code executing at the interrupt level and
represents code executing at the thread level.

Device Drivers User Guide
August 2018

1.3.1 Open/Close

adi_xxx_Open

The open function opens the device and returns a handle to the device instance. The handleisan
abstract/opaque data structure that is unigque to the instance of the controller that is being opened.
The instance of the controller isindicated by the nDevi ceNumparameter as shown below. The
handle is then passed into all subsequent calls which allows the driver to know on which controller
instance the call is operating.

Each device driver requires memory to record information about the state of the driver. This
memory must be passed in from the application.The driver indicates the size requirements in the
API header file as shown below.

/* Menory required for the driver in ternms of bytes */
#def i ne ADI _XXX_MEMORY_SI ZE 100

ADI _ XXX _RESULT adi _xxx_Open (

uint32_t nDevi ceNum
voi d *const pDevi ceMenory,
uint32_t nMenorySi ze

ADI _XXX_HANDLE const *phDevi ce

This APl isvalid for all modes.

adi_xxx_Close

This API closes the given device instance.

ADI XXX RESULT adi _xxx_Cl ose (
ADI _ XXX _HANDLE const hDevi ce

This APl isvalid for all modes.

1.3.2 Non-Blocking Mode APIs and Buffer Ownership

All memory buffers for read and write transactions must be allocated by the application. The
drivers do not perform any dynamic memory allocation. When aread or write transaction is
initiated by an application, amemory buffer is passed to the driver.

Device Drivers User Guide
August 2018

In the case of a non-blocking transaction, the call to read or write returns immediately. The driver
completes the transaction asynchronously. While the driver is completing the transaction, the
driver owns the buffer.

The only mechanism to transfer buffer ownership from the driver back to the application is the

adi _xxx_Get Buf f er API (there are Rx and Tx versions of the APIl). When an application calls
this API, the application blocks until the transaction is completed by the driver. If the transaction
has already completed, the application returns from this call immediately, regaining ownership of
the buffer.

ADI _XXX_RESULT adi _xxx_Get Buf fer (

ADI _XXX_HANDLE const hDevi ce,
void ** const ppBuffer,
uint32 t * const pHwError

These APIs are valid for Non-Blocking mode only.

1.3.3 Non blocking buffer transaction APIs

The device drivers are designed to have aminimal footprint and minimal latency. The device
drivers do not maintain read or write buffer queues. They support only a ping pong buffer or single
buffer scheme depending upon the peripheral. The slow speed deviceslike i2c and SPI support
only one outstanding transaction at atime, peripheraslike UART and SPORT support ping pong
buffer mode (up to two outstanding transaction at atime).

To use the device drivers in non-blocking mode and to stream data to or from the driver, an
application must allocate two buffers and then proceed to use them in the following ping pong
manner:

/'l Pseudo- code
adi _xxx_SubmitBuffer // transfer buffer to driver
whil e (cond)
{
adi _xxx_Submi tBuffer // transfer buffer to driver
adi _xxx_GCetBuffer /1 will block until transaction conplete
/1 buffer is owned by application again
/1 buffer processing

Device Drivers User Guide
August 2018

adi_xxx_SubmitBuffer

This APl initiates aread transaction by submitting a buffer for reading. The API transfers
ownership of the buffer to the driver. The driver retains ownership of the buffer until the
application callsadi _xxx_Get RxBuf f er .

The drivers support up to two outstanding transactions at atime. If more than two transactions are
requested, this API returns an error indicating that too many transactions have been requested.

ADI _XXX_RESULT adi _xxx_Subm t Buffer (
ADI XXX HANDLE const hDevi ce,

void * const pBuffer,
uint32_t const nBuf Si ze,
bool const bDMA

This APl isvalid for Non-Blocking and Callback modes.

adi_xxx_GetBuffer

This API permits an application to transfer buffer ownership from the driver back to the
application. The buffer is transferred back to the application only after the transaction that the
buffer is associated with has completed. If the transaction is not completed yet, the application
blocks until the transaction is completed. If the transaction has already completed, the API returns
immediately.

In an RTOS environment, waiting for a transaction implies yielding the processor to the next task
that is ready to run. In anon-RTOS environment, waiting for a transaction implies "spinning” or
simply polling for completion. In anon-RTOS environment "spinning” will prevent any other
useful work from occurring.

In anon-RTOS environment, to avoid waiting for completion, applications can use the non
blocking peek function adi _xxx_I| sRxBuf f er Avai | abl e, and (if the buffer is not available)
they can perform other tasks. (This API isalso functional in an RTOS environment).

When a peripheral error is detected, this API returns immediately with an error indicating that a
hardware error has occurred. The actual hardware error(s) will be written into the user-provided
variable pointed to by pHwError, see Peripheral Error Reporting, which explains how errors are
reported.

ADI _XXX_RESULT adi _xxx_Get RxBuffer (
ADI XXX HANDLE const hDevi ce,
void ** const ppBuffer,
uint32_t * const pHwError

Device Drivers User Guide
August 2018

This API isvalid only for Non-Blocking mode.

The following sequence diagram shows how the non-blocking mode APIs are used to interact with
the device driver.

Application “ Peripheral

adi_x0x_SubmitBuffer >

——————————S5tart Tra nsadion4>[|
|
|

Return

A

Repeat Until Done |
I ————

Application Code
Handle Interrupt

adi xxx_GetBuffer———»

Pend

P

|
I
|
|
I< Interrupt Service Routine .
|
|
I
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
]
|
|
]
|
|
|

4 Interrupt Service Routin94l|

|
|
I Handle Final Interrupt: Post |

44— Return Buffe r—D

1.3.4 Non-Blocking Peek Functions

These APIs can be used to check if afree buffer is available without blocking. These functions can
be used (the whole CPU in the non-RTOS case or the task in the RTOS case) to avoid blocking
when the buffer is not available.

adi_xxx_lsBufferAvailable

Checksif thefilled Rx buffer is available for processing.

Device Drivers User Guide
August 2018

ADI _ XXX RESULT adi _xxx_I| sRxBuf f er Avai | abl e(

ADI XXX HANDLE const hDevi ce,
bool * const pbAvai | abl e

)

This APl isvalid only for Non-Blocking mode.

The following sequence diagram shows how the non-blocking mode APIs are used to interact with

the device driver when using peek functions.

Applicatio“ “
I

———adi_ox_SubmitBuffer
I

I

I

I

I

| Start Transaction
I

I

I

"« Return

Peripheral
I
|
|
|
|
|
|
|
|
I
|
I
I
|
I
I
|
I

|
Repeat Until Done
|

Application Code

Interrupt Service Routineg.

Handle Interrupt

Repeat Until Done
adi_xxx_IsBufferAvailable '

False

Application Code

adi xox_IsButfe rAvaiIabIe4>.

True

adi_xx¢_GetBuffe rﬂ
Return Buffer———

Device Drivers User Guide
August 2018

|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 Interrupt Service Routineg.‘
|
|
|
|
|
|
I
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Handle Final Interrupt

10

1.3.5 Blocking Mode APIs

By calling these APIs, adriver will be placed into blocking mode. These APIswait until the given
buffer is processed. These APIs are available only for low-speed devices, such asthe UART, 12C,

and SPI controllers.

adi_xxx_Write

This API submits the given buffer for transmission and waits until it is transmitted.

When a periphera error is detected, this API returns immediately with an error indicating that a
hardware error has occurred. The actual hardware error(s) will be written into the user-provided

variable pointed to by pHwETrror,

reported.

ADI _XXX_RESULT adi _xxx_Wite

ADI XXX HANDLE const
void * const
ui nt 32_t const
bool const
uint32 t * const

)

This APl is valid only for Bl

adi_xxx_Read

see Peripheral Error Reporting, which explains how errors are

(

hDevi ce,
pBuffer,
nBuf Si ze,
bDVA,

pHWEr r or

ocki ng node.

This API submits the given buffer for receiving and waits until the buffer isfilled before returning.

When a periphera error is detected, this API returns immediately with an error indicating that a
hardware error has occurred. The actual hardware error(s) will be written into the user-provided

variable pointed to by pHwError,

reported.

ADI XXX RESULT adi _xxx_Read (

ADI XXX HANDLE const
void * const
ui nt 32_t const
bool const
uint32 t * const

see Peripheral Error Reporting, which explains how errors are

hDevi ce,
pBuffer,
nBuf Si ze,
bDIVA,

pHWEr r or

This API isvalid only for Blocking mode.

Device Drivers User Guide
August 2018

11

The following sequence diagram shows how the blocking mode APIs are used to interact with the
devicedriver.

Application n Peripheral

adi_ooc Read/Write

Start Transaction b—‘

4 Interrupt Service Routine—l

I Handle Interrupt

I4 Interrupt Service Routine

Handle Final Interrupt: Post

< Return Buffer U

1.3.6 Switching Between Interrupt and DMA Mode

Drivers permit an application to switch between interrupt mode and DMA mode at run time.
Interrupt mode can be advantageous to use for short transfers (1 to 2 words), reducing the overhead
for setting up a DMA transaction. This API can be useful in scenarios where application islooking
for a pattern/header before starting the actual DMA: initially, the application would start the
peripheral in interrupt mode and schedules short transfer for interpreting the pattern. After the
expected pattern is received, the application switches over to the DMA mode.

Switching between Interrupt and DMA mode can be done on a per transaction basis. The
adi_xxx_SubmitBuffer, adi_xxx_Read/Write APIs take a boolean parameter bDMA to allow
application to choose if the transaction should be completed using DMA mode or Interrupt mode.
When bDMA is set to true, the transaction is completed by using DMA mode, when set to false the
transaction is completed in Interrupt mode.

Device Drivers User Guide 12
August 2018

1.3.7 Using Callback Mode

By default, device drivers do not provide callbacks to the application (NOTE: Not all drivers
provide callback mode support). If required, an application can register the callback with the driver
after it is opened. The callbacks are not required for atypical application and not recommended to
use, except for "event-driven" peripherals such as accelerometers. Refer to Motivation for Avoiding
Callbacks to understand the rational for avoiding callbacks.

Thefollowing API is provided to register an optional callback and, thereby, to place the driver into
Callback mode. When a callback is registered, peripheral errors and buffers are not returned with
theadi _xxx_Get Buf f er API call. The buffer pointer and peripheral errors are passed back to
the application as callback arguments. If the application callsthe adi _xxx_CGet Buf f er after
registering the callback, the call returns an error. For more information, see Peripheral Error
Reporting, which explains how errors are reported.

The API "un-registers' the callback if called with aNULL callback parameter.

adi_xxx_RegisterCallback

ADI _ XXX RESULT adi _xxx_Regi sterCal | back (
ADI XXX HANDLE const hDevi ce,
ADI _CALLBACK pf Cal | back,
void * const pCBPar am

This API will place the driver into callback mode.

Callback Routines
All application callback routines are of type ADI _ CALLBACK.

The definition of ADI _ CALLBACK isasfollows.

typedef void (* ADI _CALLBACK) (/* Callback function pointer */

voi d pCBPar am /* Client supplied callback param */
uint32_t Event, /* Event ID specific to the Driver/Service */
voi d pArg /* Pointer to the event specific argunent */

Callbacks are called by the driver when one of the following event types occurs:
1. A read or write transaction is complete. The argument pAr g that is passed back isthe
address of the buffer. At this point the application owns the buffer.

2. Anerror has occurred during the read or write transaction. pAr g contains the error code(s)
for the driver.

Device Drivers User Guide 13
August 2018

Each driver documents the various "events" that can occur and cause a callback. It isthe
application's responsibility to process the event in the callback and take an appropriate action. If
the cause of the callback is a transaction complete event, the application must synchronize the
event with the application. Synchronization can be accomplished viaasimple global variable or, in
the context of an RTOS, via a semaphore.

Callbacks operate at interrupt level, so care must be taken to minimize the amount of code
executed inside of the interrupt.

Callback modeisrequired for " event-driven" controllers.

For controllersthat are "event data driven”, such as accel erometers, captouch, or touchscreen
controllers, blocking mode reads and writes are supported only in conjunction with Callback mode.

Supporting non-blocking calls for these devices requires too much complexity in the driver, and the
end result isaless efficient 1/0O for the application (that is, non-blocking requires more overhead
than blocking, resulting in slower 1/0). Non-blocking requires the underlying bus driver (12C or
SPI) to remain in an open state, which prevents any other context from using the bus driver.

For all of these reasons, the open API for these devices requires a callback.

The callback event indicates that data is ready to be read. The callback must synchronize this event
with the application because the blocking read call cannot be made from within the callback (the
callback is operating at interrupt level, and a blocking-mode read, while at interrupt level, resultsin
erroneous behavior). The blocking-mode read call must be made at application level.

The following sequence diagram shows how the non-blocking mode APIs are used to interact with
the device driver when using callback routines.

Device Drivers User Guide 14
August 2018

Application

Peripheral

adi oo SubmitBuffer

Start Transaction >—‘

e Return

Application Code

< Interrupt Service Routine
I Handle Interrupt

< Interrupt Service Routine
I Handle Final Interrupt
—Return Buffer—

Callback Function

1.3.8 Peripheral Error Reporting

If acallback isregistered, peripheral errors and DMA errors are reported via the callback. If a
callback is not registered, periphera errorsand DMA errors are reported via the

adi _xxx_Get Buf fer oradi _xxx_Read/ Wite APl cals. Theadi _xxx_Get Buf f er
and adi _xxx_Read/ Wi t e callswill return asingle error code (ADI _ XXX _ HW ERROR) upon
detecting an error. An application can examine the HwWError (passed as pointer to

adi _xxx_Get Buf fer oradi _xxx_Read/ Wite APIs) tofindouttheexact cause of an
error. The driver will logically OR all the errors that has occurred before calling the
adi_xxx_GetBuffer API and clear them once they are reported.

Hardware error enumeration are defined such that the errors are logically ordered. For example:

typedef enum
{
ADI _XXX_NO_HW ERR
ADI _ XXX _HW ERR_OVF
ADI _ XXX _HW ERR_UFL

0, /* No Errors were detected. */
1, /* Overflow error was detected. */
2, /* Underflow error was detected. */

Device Drivers User Guide 15
August 2018

ADl _XXX_ HWERR DVA = 4, /* DVA error was detected. */

}

1.4 Motivation for Avoiding Callbacks

There are anumber of reason why applications should avoid callbacks.
® Operatingat Interrupt Level

The callback isinvoked from the Interrupt Service Routine. Therefore, the callback is operating at
interrupt level. This gives the application supervisor mode capability. The application will have full
access to the machines MMRs and to the machine's privileged instructions.

Device Drivers User Guide 16
August 2018

	User Guide
	Features Supported by Device Drivers
	Device Driver Operating Modes
	Blocking mode
	Non-Blocking mode for all devices
	Callback mode

	Device Driver API Reference
	Open/Close
	adi_xxx_Open
	adi_xxx_Close

	Non-Blocking Mode APIs and Buffer Ownership
	Non blocking buffer transaction APIs
	adi_xxx_SubmitBuffer
	adi_xxx_GetBuffer

	Non-Blocking Peek Functions
	adi_xxx_IsBufferAvailable

	Blocking Mode APIs
	adi_xxx_Write
	adi_xxx_Read

	Switching Between Interrupt and DMA Mode
	Using Callback Mode
	adi_xxx_RegisterCallback

	Peripheral Error Reporting

	Motivation for Avoiding Callbacks

